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Abstract. Identifying active domain in a protein sequence is one of the most important functions in 
molecular biology. This is usually studied with three-dimensional (3D) structure of the active sites 
protein using Bioinformatics tools. In the absence of an experimentally determined structure, 
homology modeling can sometimes supply a useful 3D model for protein that is linked to at least one 
known protein structure. In this work, we have evaluated the sequence information of Heat Shock 
Protein (HSP) gene retrieved from Agave americana. Homology modeling, functional annotation of A. 
americana heat shock protein (HSP) sequence. Based on homology modeling, 3D structure of the 
gene was constructed. Validation tests were used to calculate and determine the reliability of the 
structure. In this study, details structure of HSP led to develop a better understanding of the HSP’s 
role in different abiotic stress response pathways.  
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1    Introduction 

Agave americana is one of Agavaceae species found in deserts. It is well adapted to arid and semiarid 
regions [1]. As most succulent plants, agaves have undergone morphological and physiological 
adaptations to survive under adverse environmental conditions. Survival of agaves in such regions is 
often related to their fleshy massiveness, or succulence. The such water capability occurs on a cellular 
level and is also related to the photosynthetic pathway used by most of other related plant species, 
known as Crassulacean acid metabolism (CAM) [2]. Plants exhibiting CAM open their stomata and 
have a net uptake of CO2 mainly at night, when the lower tissue temperature and higher ambient 
relative humidity lead to less water than daytime stomata opening. CAM can be crucial for growth and 
survival in arid habitats and has evolved many times in diverse groups of related plant. Agavaceae have 
gained attention around the world both as its potential lignocellulosic bioenergy feed stocks and models 
for exploring gene response to abiotic stress. 

Plants growth and developmental processes are substantially affected by high temperature (HT) [3, 4], 
which causes multifarious, and often adverse, alterations in plant growth, development, physiological 
processes, and yield [5, 6]. A combination of approaches based on the recent advances in genomic 
research has been formulated to address these challenges by identifying important heat stress responsive 
genes [7, 8]. Recent studies at molecular level have provide ways to develop stress tolerant varieties and 
to grow agriculturally important crop plants under heat stress.  

Some specific genes were identified in response to stress. Their stress adaptation provides a solid 
foundation for generating effective strategies to better stress tolerance in plants [9]. Heat shock proteins 
(HSPs) are found in most prokaryotes and eukaryotes, and even some viruses [10]. They are said to be 
isolated in many plant species, such as Arabidopsis, soybean, tobacco, rice, maize and wheat [11]. These 
proteins enable the cell to survive and recover from stressful conditions [12, 13]. Functional annotation 
of three-dimensional (3D) structure has big potential to examine the hereditary pattern of genes at the 
molecular level [14]. The combination of genetic mapping techniques with Bioinformatics tools will 
facilitate the detailed molecular dissection of HSP from A. americana and the results will therefore be 
valuable to study its relative species. 
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2    Materials and Methods of Construction 

2.1   Nucleotide Sequencing and Analysis 

The sequence of HSP gene of Agave americana, was retrieved from the NCBI database using the 
primary accession name JQ671429. Approximately 238 amino acid sequences were used for sequence 
analysis.  

2.2   Homology Modeling of HSP Gene 

The protein sequence of A. americana HSP gene (NCBI GenBank accession number JQ671429.1) was 
submitted to SWISS-Model server (https://swissmodel.expasy.org/interactive/nYMCSb/templates/) for 
homology modeling of the HSP proteins. A total of 319 templates were found to match the target 
sequence. This list was filtered by a heuristic down to 50. Five models (5DS2.1.A, 2BYU.1.A, 2BYU.1.B, 
1GME.2.A and 1GME.2.B) have been taken as the guide based on their similarity and identity to the 
target sequence. Validation of 3D structure was done by plotting Ramadachan plot [15] 
(http://services.mbi.ucla.edu/SAVES/Ramachandran) and calculation assessed by a versatile protein 
structure analysis PROCHECK [16]. 

2.3   Functional Annotation 

The ProSA-web server [17] (https://prosa.services.came.sbg.ac.at/prosa.php) was utilized to find the 
energetic architecture of the protein fold. The multiplication of energy graphs and calculation of z-score 
were done by uploading the PDB format target and template file. The PROCHECK was used to assess 
the overall stereo-chemical character of the model construction. A Ramachandran plot was generated for 
the model using PROCHECK and was viewed using a ghost script viewer for quality assessment of 3D 
models. The protein model structure was compared to differentiate the patterns of distribution of Alpha 
helices, Beta plated sheets and interconnecting loops. 

2.4   Identification of Active Site 

It is implicitly assumed that having the protein’s structure will provide insights into its function. 
However, knowing a protein’s three-dimensional structure is insufficient to determine its function [18]. 
To analyze and predict the multifunctional aspects of proteins to recognize active sites and binding 
regions in these protein structures, HSP gene was examined for the presence or absence of conserved 
domains using SMART (Simple Modular Architecture Research Tool) (http://smart.embl-heidelberg.de). 
SMART allows the identification and annotation of genetically mobile domains and the analysis of 
domain architectures. 

3    Results 

The current work focused to describe homology modeling, functional annotation of HSP gene in Agave 
americana using different Bioinformatics approaches. 

3.1   Homology Modeling 

Homology detection by iterative (HHblits) [19] for evolutionary and a three-dimensional structure of 
HSP was predicted (https://swissmodel.expasy.org/interactive) (Figure 2) to study the localization and 
interaction of proteins in stable confirmation. Among the 50 templates, 5SD2.1.A showed the highest 
similarity with 39% and 41.94% identities (Table 1). Moreover, the results were further analyzed by 
verifying 3D. The model quality shows 90% (Figure 3) which further confirms the good quality of the 
generated model. This predicted information will help in better understanding of mechanisms underlying 
to heat tolerance, and the use this information in protein engineering will help to improve plants to high 
temperature conditions. 
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4    Discussion 

This research examined the homology between known HSP genes and HSP gene from A. americana, the 
result shows a Core domain of the class I small heat-shock protein HSP 18.1 from Pisum sativum, which 
is considerably more divergent in structure and function than the HSP70s. The sHSPs are found in 
bacteria, archaea and eukaryotes. They range in monomer size between 12 and 43kDa, and are 
characterized by a conserved ᾳ-crystallin domain of about 80 residue [20]. The characteristic functions of 
this class have the ability to suppress the in vitro aggregation of denaturing protein, while in vivo their 
expression protects cells during stress [21]. The induction of transcription of this protein is a common 
phenomenon in all living organisms. It is believed that in plant this protein reflects an adaptation to 
tolerate stress [22]. Heat shock proteins have some kind of related roles in regulating a range of effect or 
components, all of which contribute to survival under abiotic stress by solving the problem of misfolding 
an aggregation, as well as its role as chaperones [23]. Finally, it is important to study stress 
combinations to end up with tolerant plant.  

5    Conclusion 

Protein structure determination of challenging molecular assemblies requires integration of different data 
type obtained by multiple methods. This research is based on functional annotation of heat shock 
protein from Agave americana revealed four active site. This result will certainly help to identify small 
heat shock protein from the relative species and enhance the heat stress tolerance in economical 
important plants.  
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