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Abstract. A series of novel dithioxopyrido[2,3-d:6,5-d’]dipyrimidine-4,6-dione derivatives were 
synthesized through a one-pot three-component approach using HAp-encapsulated-γ-Fe2O3[γ-
Fe2O3@HAP-SO3H] catalyzed condensation of 6-amino-2,3-dihydro-2-thioxopyrimidin-4(1H)-one and 
various substituted aryl aldehydes at 110 oC in DMF. In this protocol the use of nanocatalyst 
provided a green, useful and rapid method to generate the products in short reaction times and good 
to excellent yields (70–95%) and the catalyst is easily separated by applying an external magnetic 
field. 

Keywords: Pyrido[2,3-d]pyrimidines, three-component, dipyrimidine, [γ-Fe2O3@HAP-SO3H],
nanocatalyst. 

1. Introduction

Nanometer-sized materials have attracted substantial interest in the scientific community because of 
their special properties. The relatively large surface area and highly active surface sites of nanoparticles 
enable them to have a wide range of potential applications. Magnetic iron oxide nanoparticles (MNPs) 
as a new kind of nanometer-sized material, have multiple practical applications, such as chemistry, 
physics, medicine, and biology due to their multifunctional properties such as small size, 
superparamagnetism, high reactivity, low toxicity and high thermal and mechanical stability [1-4]. 
Additionally, the magnetic properties make the recovery of the catalyst easy by mean of an external 
magnetic field [5,6]. Recent studies show that magnetic nanoparticles are excellent catalysts for organic 
reactions [7-8]. 

MNPs as solid acid catalysts have acquired organic chemists’ attention as a new alternative to porous 
materials for supporting catalytic transformations. Due to their unique properties, magnetic 
nanoparticles have found potential applications in various fields, such as magnetically assisted drug 
delivery, magnetic resonance imaging (MRI) contrast agents, hyperthermia and magnetic separation of 
biomolecules. However, for many applications it is crucial to develop protection strategies to chemically 
stabilize the naked magnetic nanoparticles, thus, in the fabrication of core–shell magnetic particles, 
hydroxyapatite has received considerable attention as one of the most ideal biocompatible materials for 
encapsulated iron oxide NPs. On the other hand, the development of new solid acids is expected to have 
a major impact on industrial applications as well as for basic research. This problem could be overcome 
by designing different Brønsted acids (SO3H, HClO4, HBF4) on γ-Fe2O3@SiO2 [9,10] and functionalized 
hydroxyapatite-encapsulated γ-Fe2O3 magnetic nanoparticles [11-14]. 

In addition, pyrimidine and its fused heterocyclic systems are significant among various heterocycles, 
as they are found to possess valuable pharmaceutical and biological properties [15]. In particular, the 
synthesis of pyridopyrimidine and their derivatives remains of great interest in organic chemistry, 
because some of them exhibit significant biological and pharmacological activities, such as antifolate 
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activity [16], antibacterial activity [17], tyrosine kinase activity [18], antimicrobial activity [19], calcium 
channel antagonists activity [20], anti-inflammatory and analgesic activity [21], antileishmanial activity 
[22], tuber-culostatic activity [23], anticonvulsants activity [24], diuretic and potassium-sparing activity 
[25], antiaggressive activity [26], and antitumor activity [27]. 

Several approaches have been developed for the synthesis of pyridopyrimidines [28,29], such as the 
reaction of benzylidene derivatives of malononitrile with 6-amino-3,4-dihydropyrimidine in refluxing 
ethanol [30,31]; the reaction of 6-amino-1-thio uracil with ethyl-3-phenyl-2- cyanoacrylate in absolute 
ethanol and in the presence of Et3N by heating [32,33]; the three-component reaction of aldehydes, alkyl 
nitriles and aminopyrimidines in water and in the presence of KF-Al2O3 as catalyst [34]; the three-
component reaction catalyzed by triethyl benzyl ammonium chloride (TEBAC) [35] or reaction of 
amino-uracil with α,β-unsaturated compounds in ionic liquid at 90˚C [36]. Some of the reported 
methods suffer from disadvantages such as multi-step synthesis with the use of expensive harmful 
reagents, low yields and longer reaction times. Thus, the development of efficient method for the 
synthesis of biologically active compounds such as pyridopyrimidines, in one-step would be highly 
valuable and desirable. 

In continuation of our interst for the development of environmentally friendly procedures and 
sustainable methods for the synthesis of biologically important compounds [37-40], herein we wish to 
report our novel method for the one-pot three-component synthesis of dithioxopyrido [2,3-d:6,5-
d’]dipyrimidine-4,6-diones using [γ-Fe2O3@HAp-SO3H] as a recyclable nanocatalyst. 

2. Results and Discussion

As a starting point, the requisite starting material 1 (Scheme 1) was prepared by condensation of 
thiourea with ethyl cyanoacetate in sodium ethoxide according to the known procedures [41]. 
Nanocatalyst (γ-Fe2O3@HAP-SO3H) was synthesized according to the previously reported procedure 
[11].  

Scheme 1. Synthesis of dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-dione derivatives (3a-o). 

To optimize the desired reaction conditions, the three-component reaction of 6-amino-2,3-dihydro-2-
thioxopyrimidin-4(1H)-one 1, (2 mmol) 2-nitrobenzaldehyde 2a (1 mmol), andγ-Fe2O3@HAP-SO3H was 
used as a model system. The reaction mixture was heated at 110 oC in DMF, which produced the 
product 3a in 20 min and 85% yield. 

To explore the scope and versatility of this method and the effect of various parameters, preparation 
of 3a as a model reaction was attempted in various solvents such as DMF, EtOH, THF, ethylene glycol, 
CH3Cl and H2O were investigated. The results are summarized in Table 1. It is clear from the results 
that the reaction in DMF produced the product in lower reaction time and higher yield (85%). 

Table 1. Screening of different solvent for the synthesis of 3a in the presence of γ-Fe2O3@HAP-SO3H.

Yields (%)a Time (min)Temperature (oC)Solvent Entry
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85 20 110 DMF  1 
60 24 80 EtOH 2 
55 28 65 THF  3 
65 18 110 ethylene glycol4 
50 32 60 CHCl3 5 
- 35 100 H2O 6 

a Isolated yield 

More over in order to compare the catalytic activity of γ-Fe2O3@HAP-SO3H with other catalysts in 
preparation of 3a, catalytic activity of various acidic and basic catalysts were evaluated for the model 
reaction in DMF at 110 oC. The results are summarized in Table 2. It is evident from Table 2, that γ-
Fe2O3@HAP-SO3H successfully promotes this coupling reaction and gives the best result (entry 6). We 
also verified the amount of the catalyst in preparation of 3a and the best result was obtained using 0.01 
g γ-Fe2O3@HAP-SO3H at 110 oC in DMF. 

Table 2. Comparison of efficiency of various catalysts in one-pot synthesis of 3a in DMF at 110 oC. 

Yields (%) Time (min.)Catalyst aEntry 
55 250 P-TSA 1 
70 300 AcOH 2 
45 350 Et3N 3 
50 320 L-Proline 4 
40 370 DABCO 5 
85 20 γ-Fe2O3@HAP-SO3H6 
70 45γ-Fe2O3@HAP-SO3H7 
75 45 γ-Fe2O3@HAP-SO3H8 

aAmount of catalyst used for entries 1-6 (0.01 g/mmol substrate), 7 (0.005 g/mmol substrate), 8 
(0.02 g/mmol substrate). 
 

Using the optimized conditions, several dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-diones derivatives 
were synthesized (Scheme 1). The results are summarized in Table 3. The structure of all products was 
established by spectroscopic methods (IR, 1H NMR, 13C NMR) and elemental analyses. 

Table 3. One-pot synthesis of dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-diones derivatives (3a–o) in the 
presence γ-Fe2O3@HAP-SO3H as nanocatalyst at 110 oC. 

Entry Ar Mp (oC)
Classical γ-Fe2O3@HAP-SO3H

Time (h) Yields (%)a Time (min) Yields (%)a,b

3a 2-NO2C6H4 >300 5 70 20 85
3b 2,4-Cl2C6H3 >300 3 82 25 90
3c 4-FC6H4 >300 3 80 27 90
3d 4-BrC6H4 >300 3 78 30 90
3e 3-BrC6H4 >300 4 75 33 87
3f 3-NO2C6H4 >300 4 72 35 85
3g 4-ClC6H4 >300 3 85 40 95
3h 4-MeOC6H4 >300 3 65 45 82
3i 3,4-(MeO)2C6H3 >300 4 62 45 78
3j 4-MeC6H4 >300 6 60 50 75
3k 3-MeOC6H4 >300 5 57 53 72
3l Ph >300 5 55 55 70
3m 1-Naphthyl >300 4 50 60 73
3n 2-ClC6H4 >300 5 42 60 75
3o 2-HOC6H4 >300 6 40 75 70

a Isolated yields, b Identified by spectroscopic analysis (IR, 1H NMR, 13C NMR).
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Since, catalyst reusability is very important from both economic and environmental points of view, 
the catalytic reusability of γ-Fe2O3@HAP-SO3H was investigated in several subsequent runs. The 
nanocatalyst was separated from the reaction medium simply by an external magnetic field, washed 
with ethanol, dried under vacuum and reused for the subsequent reactions. After 10 successive runs the 
catalytic activity of γ-Fe2O3@HAP-SO3H was almost remained unchanged. The high reusability of the 
catalyst can be explained by its high thermal and mechanical stability and vast surface area owing to an 
extremely high porosity. 

The mechanism of this multicomponent reaction involves a Knoevenagel condensation/Michael 
addition cascade process. To form the reaction product, intermediates 4 are attacked by exocyclic NH2-
group followed by the release of NH3 and catalyst. The use of γ-Fe2O3@HAP-SO3H nanocatalyst 
provides efficient acidic sites and therefore facilitates the reaction (Scheme. 2). 
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Scheme 2: A plausible mechanism for the synthesis of dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-dione 3 using γ-
Fe2O3@HAP-SO3H. 

3. Conclusion 

In summary, for the first time we showed that [γ-Fe2O3@HAp]supported sulfonic acid was an effective 
heterogeneous catalyst for the one-pot synthesis of dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-dione 
derivatives 6-amino-2,3-dihydro-2-thioxopyrimidin-4(1H)-one from various substituted aryl aldehydes at 
110 oC in DMF. The mild reaction conditions, cost-effective catalyst, high yields, easy work-up 
procedures, make it a useful alternative to previously applied procedures. Compared with nonmagnetic 
nanoparticle catalytic systems, the present protocol combines the advantages of solid Brønsted acid and 
magnetic nanoparticles and offers great potentials for the rapid synthesis of pyrido [2,3-d]pyrimidines. 

4. Experimental 
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4.1 Material and Methods 

Melting points were measured on an Electro thermal 9100 apparatus. IR spectra were determined on a 
Shimadzo IR-470 spectrometer. 1H NMR and 13C NMR spectra were recorded on a 400 MHz Bruker 
DRX-400 in DMSO-d using TMS as an internal standard. Elemental analyses were performed on a 
Carlo-Erba EA1110CNNO-S analyzer and agreed (within 0.30) with the calculated values. XRD was 
carried out on a Philips X-Pert MPD diffractometer using Co tube. Scanning electron microphotographs 
(SEM) were obtained on a PHILIPS XL30 electron microscope. All the chemicals were purchased from 
Merck and used without further purification. All solvents used were dried and distilled according to 
standard procedures. 

4.2 General Procedure for Preparation of Dithioxopyrido [2,3-d:6,5-d’]dipyrimidine-4,6-
diones 

To a mixture of 6-amino-2, 3-dihydro-2-thioxopyrimidin-4(1H)-one 1 (2 mmol) and aryl aldehyde 2 (1 
mmol) in DMF (5 mL) was added γ-Fe2O3@HAP-SO3H (10 mg, 0.09 mmol%) and the reaction mixture 
was stirred mechanically at 110 oC. After the completion of the reaction, which was monitored by TLC 
analysis, the reaction mixture was diluted with hot ethanol and the catalyst was easily separated from 
the reaction mixture by an external magnet. The product obtained was collected by filteration, washed 
with ethanol and recrystallized from appropriate solvent to furnish the desired pure product (3a–o). 
Some data of selected compounds are listed below. 
4.2.1  2,8-Dithioxopyrido-5-(2-nitrophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]-dipyrimidine-

4,6(3H,7H)-dione (3a) 
Yield 85%: white powder; Mp >300 oC; IR (KBr, cm-1): 3401 (N-H), 3064, 2898, 1632 (CONH), 1551, 

1456, 1551, 1355 (NO2); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.11 (brs, 2H, NH), 11.93 (brs, 2H, 
NH), 7.66 (d, 1H, J = 8.0 Hz, HAr), 7.56 (t, 1H, J = 7.2 Hz, HAr), 7.42 (t, 1H, J = 7.8 Hz, HAr), 7.35 (d, 
1H, J = 8.0 Hz, HAr), 6.64 (brs, 1H, NH), 5.88 (s, 1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 
175.0, 173.3 (C=S), 163.5, 163.1 (C=O), 153.9, 149.9, 132.6, 132.4, 129.0, 127.6, 124.3, 121.9, 90.2, 89.0, 
39.3. Anal. Calculated for C15H10N6O4S2 (402.41), Found: C, 44.65; H, 2.35; N, 20.72 requires C, 44.77; 
H, 2.50; N, 20.88%. 
4.2.2  2,8-Dithioxopyrido-5-(2,4-dichlorophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’] 

dipyrimidine-4,6(3H,7H)-dione (3b) 
Yield: 90%; White powder; Mp >300 oC; IR (KBr, cm-1): 3390, 3152 (N-H), 1651 (CONH), 1549, 1164 

(C=S), 1046 (C-Cl); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.10 (brs, 2H, NH), 11.95 (brs, 2H, 
NH), 7.47 (d, 1H, J = 2.4 Hz, HAr), 7.34 (dd, 1H, J = 8.4, 2.4 Hz, HAr), 7.28 (d, 1H, J = 8.4 Hz, HAr), 
6.57 (brs, 1H, NH), 5.27 (s, 1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.2, 173.1 (C=S), 
163.1, 163.0 (C=O), 153.5, 153.4, 133.6, 131.6, 130.8, 129.3, 128.8, 127.2, 90.2, 89.8, 32.1. Anal. 
Calculated for C15H9Cl2N5O2S2 (426.30), Found: C, 42.50; H, 2.01; N, 16.32 requires C, 42.26; H, 2.13; N, 
16.43%. 
4.2.3  2,8-Dithioxopyrido-5-(4-flourorophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’] 

dipyrimidine-4,6(3H,7H)-dione (3c) 
Yield 90%: white powder; Mp >300 oC; IR (KBr, cm-1 ): 3393, 3163 (N-H), 2961, 1608 (CONH), 1279 

(C-N), 1218 (C-F), 1169 (C=S); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.06 (brs, 2H, NH), 11.85 
(brs, 2H, NH), 7.10-6.98 (m, 4H, HAr), 6.76(brs, 1H, NH), 5.30 (s, 1H, CH), 13C NMR (100 MHz, DMSO-
d6): δ(ppm) = 172.7, 172.0 (C=S), 162.9, 161.9 (C=O), 158.7, 153.3, 133.8, 128.4, 128.3, 114.5, 90.1, 
31.9. Anal. Calculated for C15H10FN5O2S2 (375.40), found: C, 47.84; H, 2.53; N, 18.42 requires C, 47.99; 
H, 2.68; N, 18.66%. 
4.2.4  2,8-Dithioxopyrido-5-(4-bromophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3d) 
Yield 90%: white powder; Mp >300 oC; (KBr, cm-1): 3333, 3147 (N-H), 1603 (CONH), 1541, 1233 (C-

N), 1172 (C=S), 1065 (C-Br); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.12 (brs, 2H, NH), 11.88 
(brs, 2H, NH), 7.42 (d, 2H, J = 8.2 Hz, HAr), 7.06 (d, 2H, J = 8.2 Hz, HAr), 6.79 (brs, 1H, NH), 5.30 (brs, 
1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.2, 172.5 (C=S), 163.4, 162.8 (C=O), 153.9, 
153.5, 138.0, 131.1, 129.5, 124.8, 124.6, 123.2, 90.3, 89.0, 36.3. Anal. Calculated for C15H10BrN5O2S2 

(436.94), Found: C, 41.14; H, 2.15; N, 16.12 requires C, 41.29; H, 2.31; N, 16.05%. 
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4.2.5  2,8-Dithioxopyrido-5-(3-bromophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-
4,6(3H,7H)-dione (3e) 
Yield 87%: white powder; Mp >300 oC; (KBr, cm-1): 3401, 3161 (N-H), 3036, 1609 (CONH), 1551, 

1279 (C-N), 1178 (C=S), 1041 (C-Br); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.13 (brs, 2H, NH), 
12.00 (brs, 2H, NH), 7.34 (d, 1H, J = 8.0 Hz, HAr), 7.23-7.19 (m, 2H, HAr), 7.11 (d, 1H, J = 8.0 Hz, HAr), 
6.79 (brs, 1H, NH), 5.36 (s, 1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.3, 173.2 (C=S), 
163.4, 162.8 (C=O), 154.9, 153.9, 141.6, 130.5, 129.7, 128.8, 126.2, 121.9, 90.2, 78.7, 36.3. Anal. 
Calculated for C15H10BrN5O2S2 (436.94), Found: C, 41.42; H, 2.13; N, 15.51 requires C, 41.29; H, 2.31; N, 
16.05%. 
4.2.6  2,8-Dithioxopyrido-5-(3-nitrophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3f) 
Yield 85%: White powder; Mp >300 oC; (KBr, cm-1): 3398, 3158 (N-H), 2962, 1699 (CONH), 1547, 

1349 (NO2), 1206 (C-N), 1174 (C=S); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.18 (brs, 2H, NH), 
11.96 (brs, 2H, NH), 8.05 (d, 1H, J = 8.0 Hz, HAr), 7.86 (brs, 1H, HAr), 7.61- 7.53 (m, 2H, HAr), 6.81 (brs, 
1H, NH), 5.45 (brs, 1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.4, 172.5 (C=S), 163.5, 
161.5 (C=O), 154.0, 148.3, 141.3, 134.3, 129.9, 121.7, 121.1, 119.3, 91.0, 89.8, 33.0. Anal. Calculated for 
C15H10N6O4S2 (402.41), Found: C, 44.55; H, 2.26; N, 20.68 requires C, 44.77; H, 2.50; N, 20.88%. 
4.2.7  2,8-Dithioxopyrido-5-(4-chlorophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3g) 
Yield 95%: white powder; Mp >300 oC; (KBr, cm-1): 3338, 3147 (N-H), 1605 (CONH), 1543, 1233 (C-

N), 1172 (C=S), 1092 (C-Cl); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.12 (brs, 2H, NH), 11.89 
(brs, 2H, NH), 7.28 (d, 2H, J = 8.2 Hz, HAr), 7.11 (d, 2H, J = 8.0 Hz, HAr), 6.79 (brs, 1H, NH), 5.32 (brs, 
1H). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.3, 173.1 (C=S), 163.4, 162.8 (C=O), 154.9, 153.9, 
137.3, 130.4, 129.0, 128.2, 126.2, 121.9, 90.4, 89.8, 32.5. Anal. Calculated for C15H10ClN5O2S2 (391.86), 
Found: C, 45.74; H, 2.43; N, 17.58 requires C, 45.98; H, 2.57; N, 17.87%. 
4.2.8  2,8-Dithioxopyrido-5-(4-methoxyphenyl)-5,10-dihydropyrido[2,3-d:5,6-

d’]dipyrimidine-4,6(3H,7H)-dione (3h) 
Yield 82%: white powder; Mp >300 oC; (KBr, cm-1): 3379, 3131 (N-H), 2958, 1612 (CONH), 1455, 

1235 (C-N), 1170 (C=S), 1041 (C-O); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.07 (brs, 2H, NH), 
11.85 (brs, 2H, NH), 6.99 (d, 2H, J = 8.0 Hz, HAr), 6.81 (d, 2H, J = 8.0 Hz, HAr), 6.60 (brs, 1H, NH), 
5.30 (s, 1H, CH), 3.71 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.2, 173.1 (C=S), 163.5, 
162.3 (C=O), 157.6, 153.8, 141.6, 129.9, 128.0, 126.2, 121.9, 113.7, 91.0, 78.7, 55.4, 32.2. Anal. 
Calculated for C16H13N5O3S2 (387.44), Found: C, 49.44; H, 3.23; N, 18.01 requires C, 49.60; H, 3.38; N, 
18.08%. 
4.2.9  2,8-Dithioxopyrido-5-(3,4-dimethoxyphenyl)-5,10-dihydropyrido[2,3-d:5,6-d’] 

dipyrimidine-4,6(3H,7H)-dione (3i) 
Yield 78%: white powder; Mp >300 oC; (KBr, cm-1): 3408, 3155 (N-H), 3060, 2897, 1632 (CONH), 

1550, 1226 (C-N), 1029 (C-O); 1H NMR (400 MHz, DMSO-d6): δ= 12.07 (brs, 2H, NH), 11.85 (brs, 2H, 
NH), 6.81 (d, 1H, J = 8.4 Hz, HAr), 6.78 (brs, 1H, HAr), 6.64 (brs, 1H, NH), 6.59 (d, 1H, J = 8.4 Hz, 
HAr), 5.31 (brs, 1H, CH), 3.71 (s, 3H, MeO), 3.66 (s, 3H, MeO). 13C NMR (100 MHz, DMSO-d6): δ= 
173.2, 172.6 (C=S), 163.5, 162.3 (C=O), 154.9, 153.9, 148.8, 147.3, 130.7, 118.9, 111.8, 111.6, 91.0, 78.7, 
56.0 (OMe), 55.9 (OMe), 32.5. Anal. Calculated for C17H15N5O4S2 (417.46), Found: C, 48.84; H, 3.53; N, 
16.71 requires C, 48.91; H, 3.62; N, 16.78%); 
4.2.10  2,8-Dithioxopyrido-5-(4-methylphenyl)-5,10-dihydropyrido[2,3-d:5,6-

d’]dipyrimidine-4,6(3H,7H)-dione (3j) 
Yield 75%: White powder; Mp >300 oC; (KBr, cm-1): 3333, 3173 (N-H), 2898, 1605 (CONH), 1544, 

1228 (C-N), 1167 (C=S); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.08 (brs, 2H, NH), 11.85 (brs, 2H, 
NH), 7.03 (d, 2H, J = 8.2 Hz, HAr), 6.96 (d, 2H, J = 8.2 Hz, HAr), 6.79 (brs, 1H, NH), 5.31 (s, 1H, CH), 
2.25 (s, 3H, Me). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.2, 172.6 (C=S), 163.5, 161.5 (C=O), 
153.8, 151.3, 149.5, 135.1, 134.6, 129.0, 126.9, 124.0, 90.8, 89.8, 32.5, 21.5 (Me). Anal. Calculated for 
C16H13N5O2S2 (371.44), Found: C, 51.66; H, 3.43; N, 18.75 requires C, 51.74; H, 3.53; N, 18.85%. 
4.2.11  2,8-Dithioxopyrido-5-(3-methoxylphenyl)-5,10-dihydropyrido[2,3-d:5,6-

d’]dipyrimidine-4,6(3H,7H)-dione (3k) 
Yield 72%: White powder; Mp >300 oC; (KBr, cm-1): 3402, 3155 (N-H), 3035 2956, 1694 (CONH), 

1549, 1453, 1215 (C-N), 1173 (C=S), 1043 (C-O); 1H NMR (400 MHz, DMSO-d6): δ= 12.05 (s, br., 2H), 
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11.83 (s, br., 2H), 7.13 (t, J = 7.9 Hz, 1H, HAr), 6.76 (s, br., 1H, HAr), 6.71-6.64 (m, 2H, HAr), 6.58 (s, 1H, 
NH), 5.30 (s, 1H, CH), 3.66 (s, 3H, OMe). 13C NMR (100 MHz, DMSO-d6): δ= 172.8, 172.0 (C=S), 
163.0, 159.2 (C=O), 153.4, 139.8, 128.9, 118.9, 112.9, 110.9, 108.0, 90.3, 54.9, 32.4. Anal. Calculated for 
C16H13N5O3S2 (387.44), Found: C, 49.53; H, 3.25; N, 18.19 requires C, 49.60; H, 3.38; N, 18.08%.; 
4.2.12  2,8-Dithioxopyrido-5-(phenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3l) 
Yield 70%; white powder; Mp >300 oC; (KBr, cm-1): 3404, 3323, 3155 (N-H), 2962, 2896, 613 (CONH), 

1550, 1444, 1287 (C-N), 1183 (C=S); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 11.88 (brs, 2H, NH), 
11.67 (brs, 2H, NH), 7.24 (t, 1H, J = 7.4 Hz, HAr), 7.15-7.08 (m, 2H, HAr), 6.80 (brs, 1H, NH), 5.35 (s, 
1H, CH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 173.2, 172.6 (C=S), 163.5, 162.3 (C=O), 154.9, 
153.9, 138.3, 129.7, 128.8, 121.9, 90.7, 78.6, 32.9. Anal. Calculated for C15H11N5O2S2 (357.41), Found: C, 
50.33; H, 3.02; N, 19.45 requires C, 50.41; H, 3.10; N, 19.59%. 
4.2.13  2,8-Dithioxopyrido-5-(1-naphtyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3m) 
Yield 73%: white powder; Mp >300 oC; (KBr, cm-1): 3425, 3323 (N-H), 3082, 2969, 1634 (CONH), 

1551, 1438, 1294 (C-N); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.01 (m, 4H, NH), 7.91 (d, 1H, J = 
7.2, 1.8 Hz, HAr), 7.78-7.74 (m, 1H, HAr), 7.67 (d, 1H, J = 6.8, 1.2 Hz, HAr), 7.50-7.48 (m, 2H, HAr), 7.47 
(t, J = 8.0 Hz, 1H, HAr), 7.33 (d, 1H, J = 7.6 Hz, HAr), 6.64 (brs, 1H, NH), 5.80 (s, 1H, CH). 13C NMR 
(100 MHz, DMSO-d6): δ(ppm) = 173.1, 173.0 (C=S), 163.5, 163.1 (C=O), 154.0, 153.4, 131.7, 131.3, 
130.2, 129.6, 129.2, 129.2, 127.4, 127.2, 126.2, 125.9, 90.2, 89.8, 31.7. Anal. Calculated for C19H13N5O2S2 
(407.47), Found: C, 55.93; H, 3.12; N, 17.05 requires C, 56.01; H, 3.22; N, 17.19%. 
4.2.14  2,8-Dithioxopyrido-5-(2-chlorophenyl)-5,10-dihydropyrido[2,3-d:5,6-d’]dipyrimidine-

4,6(3H,7H)-dione (3n) 
Yield 75%: White powder; Mp >300 oC; (KBr, cm-1): 3394, 3340, 3128 (N-H), 3041, 2954, 1646 

(CONH), 1549, 1279 (C-N), 1169 (C=S); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.07 (brs, 2H, NH), 
11.93 (brs, 2H, NH), 7.34-7.18 (m, 4H, HAr), 6.60 (brs, 1H, NH), 5.31 (s, 1H, CH). 13C NMR (100 MHz, 
DMSO-d6): δ(ppm) = 173.2, 173.1 (C=S), 163.5, 162.3 (C=O), 153.5, 153.5, 137.4, 132.8, 130.0, 129.4, 
128.0, 127.1, 90.2, 78.6, 32.4. Anal. Calculated for C15H10ClN5O2S2 (391.86), Found: C, 45.81; H, 2.35; N, 
17.61 requires C, 45.98; H, 2.57; N, 17.87%. 
4.2.15  2,8-Dithioxopyrido-5-(2-hydroxyphenyl)-5,10-dihydropyrido[2,3-d:5,6-

d’]dipyrimidine-4,6(3H,7H)-dione (3o) 
Yield 70%: White powder; Mp >300 oC; (KBr, cm-1): 3434 (O-H), 3308 (N-H), 3055 2963, 1648 

(CONH), 1459, 1222 (C-N and C-O); 1H NMR (400 MHz, DMSO-d6): δ(ppm) = 12.32 (brs, 2H, NH), 
11.59, 11.51 (brs, 2H, NH), 7.24-7.20 (m, 1H, HAr), 7.13-7.09 (m, 2H, HAr), 6.99 (d, J = 8.4 Hz, 1H, HAr), 
6.77 (brs, 1H, NH), 4.91 (s, 1H, CH), 4.71 (s, 1H, OH). 13C NMR (100 MHz, DMSO-d6): δ(ppm) = 
173.6, 173.6 (C=S), 161.5, 160.6 (C=O), 154.6, 151.3, 149.5, 129.9, 129.1, 128.3, 125.5, 124.0, 93.9, 91.6, 
27.1. Anal. Calculated for C15H11N5O3S2 (373.41), Found: C, 48.13; H, 3.08; N, 18.87 requires C, 48.25; H, 
2.97; N, 18.76%. 
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