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Abstract. For the first time, we establish the Lippmann-Schwinger equations for a system of 
multiband energy-eigenvalue spectrum so that the involved time-independent Schrödinger 
wavefunctions become matrix elements. As a matter of fact, a supremum-seminorm of the total 
wavefunction matrix is estimated in terms of the same seminorm for the partial wavefunction matrix 
and for two key matrices of operators. In addition, an associated matrix-tensor formalism is presented. 
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1    Introduction 

Treating by using elegant mathematical-physics methods, quantum systems of multiband energy-
eigenvalue spectra is certainly interesting because these systems play an important role in several areas 
of Physics. Let us regard, for instance, quantum systems of two-band energy eigenvalue spectra [1,2]. A 
typical example of these systems can be found in magnetism of amorphous solids [1-3]. In particular, we 
refer to determine the magnetic susceptibility of amorphous solids [1-3]. In this context, a Wannier-type 
representation was employed in ref.[1] while a generalization of this representation, by introducing a 
matrix formalism, was done in ref.[2]. Really, the physics of condensed matter exhibits a number of 
examples of quantum systems with multiband eigenvalue spectra. Consider, for instance, a significant 
two-band eigenvalue spectrum consisting of spin-up and spin-down electronic bands (as, for example, in 
metamagnetic systems [4,5] and nanophysics [6-10]) and a typical system with three-band spectrum as, 
for instance, a semiconductor with the conduction band, the valence band, and the forbidden band 
(band gap). Certainly, systems with two or three eigenvalue bands are relatively frequent in Physics. 
Therefore, it is natural to think on generalizing for many bands so that elaborating analytical models to 
characterize multiband systems is desirable. 

On the other hand, the so-called Lippmann-Schwinger model is suitable to discuss relevant issues in 
Nuclear Physics as, for example, neutron-nucleus scattering [11] and in Solid State Physics as, for 
instance, problems related to optical potential [12]. It is well-known (see, for instance, ref.[11]) that the 
Lippmann-Schwinger approach consists of a system of equations (one equation for each quantum state) 
relative to the time-independent non-relativistic or relativistic Schrödinger equation with a potential 
viewed as a perturbation. Here, we will consider the static non-relativistic Schrödinger equation with a 
time-independent external potential. Within this picture, electron-atom scattering or electron-molecule 
scattering may be considered by employing the Lippmann-Schwinger equations in relation to a 
multiband energy-eigenvalue spectrum. In fact, among other things, we will establish a matrix formalism 
to describe the aforementioned scattering. 

2    Theory 

We consider the ( )ψ +  Lippmann-Schwinger equations, which read (see, for example, refs.[11,12]):

( ) 1

0
ˆ ˆ

n n n nE i H Vψ ϕ ε ψ
−

= + + −   (1) 
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where nψ  denotes elastic (coherent) total wavefunction ( 1,2,...n = ), nϕ  is partial wavefunction, 0Ĥ  
indicates field-free Hamiltonian operator, nE  is the thn  energy eigenvalue, V̂  is the involved, time-
independent, potential-energy operator, and i  is the imaginary unit. We have the time-independent 
Schrödinger equations, namely, 0

ˆ
n n nH Eϕ ϕ=  and ( )0

ˆ ˆ
n n nH V Eψ ψ+ = . 

Now we are interested in extrapolate formula (1) to a quantum system of multiband energy-
eigenvalue spectrum. In this case, the corresponding time-independent Schrödinger equations are: 
 0

ˆ
mn mn mnH Eϕ ϕ=   (2) 

 ( )0
ˆ ˆ

mn mn mnH V Eψ ψ+ =   (3) 

where m  is the band index and n  labels the (bound) states in each band; we have that 1,2,...,m N=  
(where N  is the number of bands) and 1,2,...n = We may also consider the total Hamiltonian operator 
namely 0

ˆ ˆ ˆH H V≡ +  such that ˆ
mn mn mnH Eψ ψ=  (see eq.(3)). On the other hand, let us assume that 

the ground state of the system is a state such that all the states in the 1m =  band are occupied. 
Therefore, the Lippmann-Schwinger equations for the system of multiband spectrum in question are:  

 ( ) 1

0
ˆ ˆ

mn mn mn mnE i H Vψ ϕ ε ψ
−

= + + −   (4) 

which implies:  

 ( ) ( ) ( ) ( ) ( )1

0
, , ,

ˆ ˆ
mn mn mn mn

m n m n m n
r r E i H V r rψ ϕ ε ψ

−
= + + −∑ ∑ ∑� � � �   (5) 

Note that in eq.(5) it is indicated the explicit dependence on the spatial coordinates of the involved 
wavefunctions (which, of course, are complex-valued functions) and the external potential. Also in 
relation to eq.(5), for the sake of brevity of notation, we omit the range of values of m  and n  into the 
summation symbols.  

It is clear that, in both formulae (4) and (5), the total wavefunction and the partial one are matrix 
elements so that we may speak of the matrices, namely, ( )mnψΨ ≡  and ( )mnϕΦ ≡ , where, for the sake 
of brevity of notation, dependence on spatial coordinates and Dirac´s notation of “ket” vectors is not 
shown explicitly. In order to elaborate later a matrix-tensor formalism, we are interested in considering 
square matrices so that we define 0mn mnψ ϕ= =  for 1, 2,...m N N= + +   

Now, instead of utilizing the usual norm of the wavefunction Hilbert space, this norm being unity 
(normalized wavefunctions), then we define the following supremum-seminorms as figures of merit of the 
quantum multiband states in question:  

 ( )
,

sup mn
r R m n

rψ
∈

Ψ ≡ ∑�

�   (6) 

 ( )
,

sup mn
r R m n

rϕ
∈

Φ ≡ ∑�

�   (7) 

where R  is the involved spatial region which is assumed to be compact. Note that the existence of the 
right-hand side of (6) and (7) is manifest because the functions ( )mn rψ �  and ( )mn rϕ �  are twofold 
differentiable on a compact set so they are bounded in this set so the sum indicated in (6) and (7) is 
also bounded in R .  

Notice that, in effect, expressions (6) and (7) define seminorms since, although the direct assertion of 
the first axiom of a norm is fulfilled (if 0Ψ ≡  or 0Φ ≡ , the right-hand side of (6) or (7) is zero), then 
the reciprocal assertion is not fulfilled, that is, if the right-hand side of (6) or (7) is zero, then the left-
hand side can be different from zero. 

Taking supremum at both sides of (5) and using relations (6) and (7), it follows:  
 ˆˆ VΨ ≤ Φ + Γ Ψ   (8) 
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where Γ̂  is a matrix whose elements are linear operators such that ( )ˆ
m̂nγΓ ≡  and 

( ) 1

0
ˆ

m̂n mnE i Hγ ε
−

≡ + −  which are bounded. Observe that Γ̂  and V̂  are seminorms, which can be 

viewed as “strengths” of the respective operators Γ̂  and V̂ . One has: 

 
0

ˆ
ˆ sup

Ψ≠

ΓΨ
Γ ≡

Ψ
  (9) 

 
0

ˆ
ˆ sup

V
V

Ψ≠

Ψ
≡

Ψ
  (10) 

Similarly, we may regard Ψ  and Φ  as “strengths” of Ψ and Φ , respectively. On the other hand, if 
we adopt the following norms rather than the seminorms (6) and (7): 
 ( )

,
sup mn
r R m n

rψ
∈

Ψ ≡ ∑�

�   (11) 

 ( )
,

sup mn
r R m n

rϕ
∈

Φ ≡ ∑�

�   (12) 

as well as for the operators Γ̂  and V̂ , then it is easy to see that inequality (8) holds where, of course, 
now the symbol ·  means norm.  

On the other hand, relationship (5) can be expressed as follows:  
 ( )( )

, ,

ˆˆ
mn mn

m n m n
tr Vψ ϕ= + Γ ⊗ Ψ∑ ∑   (13) 

where tr  denotes trace, the tensorial product is not the standard tensor product in the Krönecker sense 
used in quantum mechanics but the dyadic-tensor product of matrices [2,13]. This product comes from 
multiplying dyadically two vectors [2,13]. As in preceding notation, for the sake of brevity, in relation 
(13) we abandon Dirac´s notation and dependence on spatial coordinates is not shown explicitly. 

Taking supremum at both sides of (13) and employing formulas (6) and (7), one gets:  

 ( )( )ˆˆsup
r R

tr V
∈

Ψ ≤ Φ + Γ ⊗ Ψ
�

  (14) 

By combining inequalities (8) and (14), we find: 
 ( )( )ˆ ˆˆ ˆsup

r R
tr V c V

∈
Γ ⊗ Ψ = Γ Ψ

�
  (15) 

where c  is a number such that < ≤0 1c  or c>1. 
Then we enunciate:  
Theorem 1.- There exists a real number namely c  ( 0 1c< ≤  or 1c > ) such that equality (15) is 

satisfied.  
On the other hand, from formula (8) it follows:  

 ˆˆ1 V
Φ

≥ − Γ
Ψ

  (16) 

Expression (16) gives a lower bound for the ratio of the “strength” of the partial wavefunction matrix 
to the “strength” of the total wavefunction matrix. The above bound depends significantly on the 
seminorms of Γ̂  and V̂ . 

Now we have: 
Definition 1.- The so-called transition operator namely T̂  is such that ˆˆ

mn mnT Vϕ ψ= . 

Definition 2.- We define the scattering operator namely Ŝ  such that ˆ
mn mnS ϕ ψ= .  

In addition, one enunciates: 
Proposition 1.- It is verified:  

 ( )ˆˆ1 TΨ ≤ Φ + Γ   (17) 

where, of course, the seminorm of T̂  is the same as for Γ̂  and V̂ . 
Proof: By using Definition 1, taking supremum at both sides of (5) and considering formulae (6) and 

(7), then relation (17) is easily found (let us regard expression (8))  
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Theorem 2.- There exists a real number namely c  such that 0 1c< ≤  or 1c >  and such that: 
 ( )( )ˆ ˆˆ ˆsup

r R
tr T c T

∈
Γ ⊗ Φ = Γ Φ

�
  (18) 

Proof: Taking supremum at both sides of (13), by using relations (6) and (7) as well as Definition 1, 
then one gets:  
 ( )( )ˆˆsup

r R
tr T

∈
Ψ ≤ Φ + Γ ⊗ Φ

�
  (19) 

(regard formula (14)) 
Combining now inequalities (17) and (19), one arrives at formula (18)  
Proposition 2.- It is satisfied the following inequality:  

 ˆ ˆˆ1S T≤ + Γ   (20) 

where, obviously, the seminorm of Ŝ  is the same as for Γ̂ , V̂  and T̂ . 
Proof: Expression (20) comes straightforwardly from Definitions 1 and 2 combined with formulas (5), 

(6) and (7)  
Corollary.- By Definition 2 and formulae (6) and (7), one gets ŜΨ Φ ≤  which, together with 

inequality (20),⇒ (17).  
Finally, we consider the following tight-binding basis [1,2]:  

 mn mk mn mk
k

ψ ψ ψ ψ= ∑   (21) 

where 1,2,...k =   
Then one has:  
Proposition 3.- It is verified that [1,2]:  

 mn mn mk mk
n k
ψ ψ ψ ψ≡∑ ∑   (22) 

Proof: By summing over the range 1,2,...n = the “product” of the “ket” vectors on the left-hand side 
of (21) by the corresponding “bra” vectors and interchanging summation with respect to n  by 

summation relative to k , then the left-hand side of (22) becomes 
2

mn mn mk mk
k

ψ ψ ψ ψ∑  with 

1mn mnψ ψ =  so expression (22) is satisfied 
Similarly to formula (21), we also consider the tight-binding basis:  

 mn mk mn mk
k

ϕ ϕ ϕ ϕ= ∑   (23) 

so that, as in relationship (22), we have:  
 mn mn mk mk

n k
ϕ ϕ ϕ ϕ=∑ ∑   (24) 

Expressions (21) to (24) represent a useful formulation from the point of view of disordered systems in 
Condensed Matter Physics [1-3].  

3    Discussion 

It is well-known that problems upon operator theory concerning quantum perturbed systems [14-19] and 
related issues [20-25] have a great relevance in Mathematical Physics; our preceding formulation is an 
example of this. As a matter of fact, by using relations (6), (7), (9) and (10), we have developed an 
approach whose main results are relationships (15) and (18). In our formulation, it has been employed 
(see relations (6) and (7)) a seminorm that can be regarded as unusual given that, of course, the usual 
norm on the Hilbert space of the wavefunctions considered here is 

1 2
1mn mnψ ψ = . However, the 

aforementioned seminorm and the norm defined in formulae (9) and (10) which, of course, correspond to 
non-Hilbert space but to semi-Banach or Banach space, then constitute, say, key signatures or figures of 
merit (“strengths”) to characterize the matrices Ψ  and Φ . We may speak of a semi-Banach space as a 
complete seminormed real or complex vector space. On the other hand, from inequality (16) one gets the 
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relative deviation ( ) ˆˆ VΨ − Φ Ψ ≤ Γ  so that an upper bound of this relative deviation equals the 

product of the “strengths” of Γ̂  and V̂ .  

4    Concluding Remarks 

We have shown that, by utilizing the four linear operators Γ̂ , V̂ , T̂  and Ŝ , an elegant mathematical 
representation has been achieved within an unusual framework because the usual Hilbert-space structure 
has not been considered but the Banach (or, more precisely, semi-Banach) space structure. This fact 
opens new avenues to treat a number of relevant issues on Mathematical Physics in an alternative way 
which could be very attractive for future studies. 
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