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Abstract. In this article, we present a new metric called the comparative uncertainty, according to 
which the least achievable relative uncertainty is calculated when measuring the Planck constant. To 
calculate the comparative uncertainty, information theory is used. The optimizing criterion is the 
number of quantities considered in the model. Its calculation is possible due to the fact that any 
model contains a certain amount of information about the object under study. Comparative 
uncertainty can be verified by field trials or computer simulations within a specified range of changes 
of the Planck constant. The concept of introduced uncertainty is universal and can be recommended 
for estimating the accuracy of measurements in the study of physical phenomena and technological 
processes. Examples of application of the proposed approach are discussed. 
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1   Introduction 

This Since Newton's law of gravity in all the basic equations of the physical-mathematical theories, 
together with the quantities there are appeared isolated values of physical quantities called the 
fundamental physical constants. In Newton’s theory it is a gravitational constant G, in special relativity 
it is the speed of light in vacuum c, in general relativity they are c and G, in quantum (non-relativistic) 
mechanics it is the Planck constant h, in quantum electrodynamics they are c and h. 

The desire to reduce the value of uncertainty in the measurement of fundamental physical constants 
is due to several reasons. Firstly, achieving an accurate quantitative description of the physical universe 
depends on the numerical values of the constants that appear in the theories. Secondly, the overall 
consistency and validity of the basic theories of physics may be proved by careful examination of the 
numerical values of these constants as determined from different experiments in different fields of 
physics. 

One of the seminal works close to the problem of the interpretation of measurement accuracy, as well 
as methods to improve the uncertainty assessment in the measurements of fundamental constants, is [1]. 
The authors noted that precise estimates of the fundamental constants of physics are subject to 
uncertainty from various sources. Reliable estimates of uncertainty are required (a) to compare the 
accuracy of different measurements of the same variable, (b) to evaluate the accuracy of other variables 
derived from them, (c) to help in defining and revising models, and most importantly, (d) to assess 
compliance with the physical theory with the current best measurements. In order to prove their 
conclusions, the authors used the Birge ratio [2], which assesses the compatibility of a set of 
measurements by comparing the variability among experiments to the reported uncertainties of the 
velocity of light, the fine structure constant and the gravitational constant. 

Two quite different kinds of the fundamental physical constant uncertainty must be considered: first, 
the relevant variables and the functional relationships among them which we know, although the values 
of the key coefficients are not known; the second, when the developer is not sure of all the relevant 
variables, or the functional relationships among them. Often uncertainty about the form of the model is 
more important than uncertainty about the values of the coefficients [3].  

Developers often have difficulty evaluating or even estimating the model’s discrepancy from a real 
fundamental physical constant under realistic conditions. A lot of the model structures do not quantify 
the uncertainty resulting from factors such as developer knowledge, intuition, experience and 
environmental properties. In addition, without at least some quantification, qualitative descriptions of 
uncertainty convey little useful information.  
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Actually, the very act of the fundamental physical constant measurement already implies the 
existence of the formulated physical–mathematical model describing the phenomenon under 
investigation. At the same time, most researchers have focused on data analysis and a calculation of the 
fundamental physical constant uncertainty value after formulating the mathematical model. But the 
unavoidable uncertainty existing before the beginning of the experiment or computer simulation, and 
caused only by the finite number of quantities recorded in the mathematical model of the fundamental 
physical constant, is generally ignored. Of course, in addition to this uncertainty, the overall uncertainty 
of the Planck constant measurement includes the posterior uncertainties related to the internal structure 
of the model, its subsequent computerization and the testing equipment characteristics: inaccurate input 
data, inaccurate physical assumptions, the limited accuracy of the solution of integral–differential 
equations, etc. Detailed definitions of many different sources of uncertainty are given in [4]. 

This paper represents our attempt to apply the universal metric for calculating the absolute and 
relative uncertainties during measurement of Planck’s constant through the use of the information and 
similarity theories. These can also be used for other fundamental physical constants and will greatly 
shorten the duration of the studies and the design stage, thereby reducing the cost of the project. 

2   Preliminaries 

Different methods are used to compare the results obtained for the Planck constant measurement [5]. In 
the theory of measurements, it is assumed that for each dimensional measured value U, there is the 
dimensional "presumed uncertainty" ΔU. The full result can be represented as U ± ΔU. This means 
that the "true value" probably lies between the maximum value U + ΔU and the minimum value of U 
- ΔU.  

The term "relative uncertainty" r is widely used in measurements of the Planck constant: 
 /U U= ∆r   (1) 
Selecting the relative uncertainty is explained by the fact that the absolute uncertainty does not always 
give an idea of how the uncertainty is important. Further, the relative uncertainty is useful for 
comparing the accuracy of different measurements. It also makes the calculations of the scatter of 
uncertainty much easier. In addition to the above types of uncertainties, in order to weight the 
approached uncertainty, the conventional value of the Planck constant is given by applying the 
conventional (i.e., adopted) values of the Josephson constant KJ-90 and von Klitzing constant RK-90 [6,7]. 
Thus, the international standard of the Planck constant value was chosen to improve the uniformity of 
the comparison of subsequent measurements. 

However, these methods for identifying the measurement accuracy do not indicate the direction in 
which you can find the true value of Planck’s constant. At the same time, evaluation of uncertainty due 
to possible systematic uncertainties in the physical measurement necessarily involves an element of 
subjective judgment. Examination of the historical measurements and recommended values of the 
fundamental physical constants shows that the reported uncertainty has a consistent bias towards the 
underestimation of the actual uncertainty. These data are consistent with the results of persistent self-
confidence in psychological research to assess the subjective probability distributions. Awareness of these 
biases can help in the interpretation of the measurement accuracy, as well as providing a basis for 
improving the evaluation of measurement uncertainty[8]. 

So far, the experimental results have been inadequate. It is assumed that these discrepancies may be 
caused by unknown systematic uncertainties, which should be reduced to a satisfactory level. Therefore, 
for existing methods there should be additional investments both in improving the test benches, and in 
improving the measurement results, as well as in searching for a universal metric that allows to check 
the true-target value of the Planck constant with a given achievable relative uncertainty.  

3   Applied Techniques 

In physics, quantities are called homogeneous if they have the same dimension. Thus, the concept of 
homogeneity is associated with dimensions, which, in turn, requires recourse to the fundamental concept 
of the system of base quantities (SBQ). Among the many used in science and engineering SBQ, CGS 
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(centimeter–gram–second system of units) and SI (International System of Units) are universally 
applicable in all fields of physics[9]. 

In the Giorgi system suggested in the early 20th century, on the basis of which SI was subsequently 
formed, seven basic quantities of measurement (ξ=7) were chosen: meter, the length L; kilogram, the 
mass M; second, the time T; Kelvin, the thermodynamic temperature Θ; ampere, the electrical current 
I; mole, the amount of substance F; candela, the luminous intensity J [10].  

The total number of quantities in the SBQ is large, but finite and can be calculated (see below). 
However, the dimensions attributed to physical quantities are rather conventional and contain a large 
fraction of arbitrariness. The only reasonable alternative is the idea of the dimensionless measurement 
system designed to solve the problem of dimensions[9]. In this work, the A-system was introduced: the 
absolute dimensionless system of physical quantities measurement based on the mathematical 
expressions for the initial physical constants. The author argued that the developed theory provides the 
tools necessary to determine any known physical constant and for “ascribing with limited or absolute 
accuracy the true value to any physical quantity”. A significant part of the monograph is occupied by 
the development of mathematical formulas, linking various constants. However, it should be noted that 
the numerical coincidence, of course, should not be ignored, but a natural number is only entitled to be 
considered as truly meaningful when it is directly related to the well-known mathematical constant, and 
when its appearance is due to the action of universal principles. Despite the many positive aspects of the 
monograph, the generalization of the mathematical theory is at odds with the established approaches of 
terminology in the field of education of algebraic equations and related structures[11]. 

In [12], using basic physical arguments and the dimensional and physical analysis, the authors derived 
the characteristic masses and sizes of important objects in the universe in terms of just a few 
fundamental constants. They illustrated the unifying power of physics and the profound connections 
between the small and the large in the observed cosmos. The authors showed that the minimum and 
maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of 
a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy, can be expressed 
in terms of either the Planck mass or the Chandrasekhar mass, in combination with a certain small 
number of dimensionless variables. Although the authors were less interested in precision than 
illumination and focus on the orders of magnitude, this work[12] is interested in the fundamental 
connections between the small and the large in this universe we jointly inhabit.  

The principle of building the dimensionless SBU based on SI with seven base quantities was suggested 
in [13]. The idea is to use the similarity and information theories in order to calculate the maximum 
possible number of dimensionless criteria in SI, µSI, and a ratio ε called a comparative uncertainty. It 
was proved that  
 ( ) ( )/ /( )pmm SIz zS zε µβ β β′ ′ ′′ ′′ ′ ′− + −= −∆ =   (2) 

All detailed definitions, and the required explanations of the quantities shown in Equation (2), are 
introduced below.  

3.1   Comparative Uncertainty 

3.1.1 We specify the concept of the "comparative uncertainty". Taking into account the fact that the 
debates and discussions on the replacement of the term "error" with the term "uncertainty" are 
continuing in nature and not mandatory [1, 14], we use the term "uncertainty". We understand the 
"uncertainty" as a discrepancy between the tested material object and the physical–mathematical model, 
including inaccuracy in the basic data that are used to compare with the prediction.  
3.1.2 We shall henceforth use the term "comparative uncertainty" ε, which is the ratio between the 
dimensional absolute uncertainty ΔU in determining the dimensional quantity U and the dimensional 
considered range of changes S* of U proposed by Brillouin [15]: 

 U Sε ∗= ∆   (3) 
Absolute and relative uncertainties are familiar to physicists. As for the comparative uncertainty, it is 

rarely mentioned. Nevertheless, the comparative uncertainty is of great importance for the application of 
information theory in physics and engineering [15]. 
3.1.3 If S* is not declared, the information obtained in the measurement is impossible to define. This 
full a priori range of changes depends on the previous knowledge which the developer had before the 
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research. If nothing is known about the studied system, then S* is defined by the limits of the measuring 
devices used. For this reason, it would be useful to express the closeness of the model to the studied 
object by the comparative uncertainty. 
3.1.4 We take into account that the comparative uncertainties of the dimensionless researched quantity 
u and the dimensional researched quantity U are equaled  

 / *   / * / * /( *  ) ( ) (  ) ( )/U S U r S r u S∆ = ∆ = ∆   (4) 
where S = S*/r* is the dimensionless considered range of changes of the dimensionless measured 
quantity u, r* is the dimensional scale parameter with the same dimension that U and S* have, and 
Δu = ΔU/r* is the dimensionless absolute uncertainty of the dimensionless quantity u. 

3.2   Number of Dimensionless Criteria µSI 

3.2.1 The dimension of any derived quantity q can only express a unique combination of the dimensions 
of the base quantities in different degrees [16]: 
 l m t i j fq L M T I J FΘ⊃ ⋅ ⋅ ⋅ ⋅ Θ ⋅ ⋅   (5) 
3.2.2 l, m... f are the exponents of the base quantities, and the range of each has a maximum and 
minimum value. According to [10], the exponents of the base quantities change in the following ranges: 

 
3 3, 1 1, 4 4, 2 2
4 4, 1 1, 1  1

l m t i
j f

≤ ≤ + − ≤ ≤ + − ≤ ≤ + − ≤ ≤ +
− ≤ Θ ≤ + − ≤ ≤ + − ≤ ≤ +

  (6) 

3.2.3 The exponents of the base quantities take only integer values [10], so the number of choices of 
dimensions for each base quantity el, …, ef, according to (6), is the following: 
 7; 3; 9; 5; 9; 3; 3l m t i j fe e e e e e eθ= = = = = ==   (7) 

3.2.4 The total number of dimension options of physical quantities Ď equals Ď = 1f
il

e −∏  

 1 7 3 9 5 9 3 3 1 76,544l m t i j fĎ e e e e e e eθ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − =   (8) 
where "-1" corresponds to the occasion when all the exponents of the base quantities in formula (5) are 
treated to zero. 
3.2.5 The value Ď includes both required and reverse quantities, for example, the length L1 and the 
running length L-1. So the number of options of dimensions may be reduced at times 2 because of the 
fact that the researched object can be judged, knowing only one of its symmetrical parts, while others 
structurally duplicating this part may be regarded as empty information. This means that the total 
number of dimension options of physical quantities without reverse quantities equals D = Ď /2 = 
38,272. 
3.2.6 According to the π-theorem [17], the number µSI of the dimensionless possible criteria with ξ = 7 
the base quantities for SI will be 
 38,272 7 38,265SI Dµ ξ= − = − =   (9) 
3.2.7 μSI is called the group order and corresponds to the maximum amount of information contained in 
SI [13]. The numerical value of µSI can only increase with the deepening of knowledge about the material 
world. The set of dimensionless criteria µSI does not exist in the physical reality. However, this 
observation is true for proper SI too. At the same time, the actually existing and observed object may 
be expressed by this set.  

3.3   SI and Class of Phenomena (CoP) 

3.3.1 SI is a set of the dimensional quantities, base and – calculated on their basis – derived, which are 
necessary and sufficient to describe the known laws of nature, as in the physical content and 
quantitatively [16].  
3.3.2 SI includes a finite number of the dimensional base and derived quantities used for descriptions of 
different classes of phenomena (CoP), which is depended on the chosen base quantities. In other words, 
the limits of the description of the studied material object are caused due to the choice of CoP and the 
number of derived quantities taken into account in the mathematical model [16]. For example, in 
mechanics SI uses the basis {the length L, weight M, time Т}, i.e. CoPSI ≡ LMТ.  
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3.3.3 β' is the number of the base quantities of the chosen CoP, z' is the total number of the 
dimensional quantities of the chosen CoP, z" is a given number of the dimensional physical quantities 
recorded in the model, β" is the number of the base quantities recorded in the model. 

3.4   Uncertainty Relation of Modeling 

Equation (2) represents the conformity principle (uncertainty relation) for the model development 
process. Any change in the level of detail of the description of the observed object (z''-β''; z'-β') causes 
a change in the minimum comparative uncertainty Δpmm /S of the model of a specific CoP and the 
achieved accuracy of each main quantity characterizing the internal structure of the object. The 
apparent free choice of the range of changes S is limited by a fixed value of the comparative uncertainty 
ε for each CoP chosen by the conscious observer. Expanding the range of changes S leads to a reduction 
of the achievable absolute uncertainty Δpmm and vice versa.  

In other words: the conformity principle is a fundamental consideration, which establishes the 
accuracy limit (for a given class of phenomena) of simultaneously defining a pair of quantities observed 
by a conscious researcher, in particular, the absolute uncertainty in the measurement of the investigated 
quantity and the interval of its changes. It is important to realize that this conformity principle is not a 
shortcoming of the measurement equipment or engineering, but rather how our brains work.  

It therefore turns out that the fuzziness (inaccurate representation) of the object in the eyes of the 
researcher depends both on the chosen class of phenomena and on the number of quantities taken into 
account by the conscious observer. The latter depends directly on the knowledge, accumulated life 
experience and intuition of the researcher. Objectively, these factors allow the possibility, already 
discussed above, of considering the choice of a quantity as a random process with an equally probable 
account of a particular quantity.  

It is interesting to speculate on further applications of Equation (2) for the accuracy of the Planck 
constant measurement, which is discussed below.  

4   Applications of µSI for Plank Constant Measurement 

Several scientific publications from 2007 to 2017 [18–27] were analysed from the position of the relative 
and comparative uncertainty values reached. The data are summarized in Table 1. In order to apply a 
stated approach, as a possible changes interval of the Planck constant, we choose the difference in its 
value obtained from the experimental results of two projects: hmin= 6.6260689124·10-34 m²·kg/s² [18] 
and hmax=6.626071213·10-

34m²·kg/s²[19]. Then the dimensional possible observed range Sh of h 
variations equals 
 34 34 40 2 2

max min 6.626071213 10 6.6260689124 10 2.3 10 (m kg s )hS h h − − −= − = ⋅ − ⋅ = ⋅ ⋅   (10) 

Table 1. Planck constant determinations and relative and comparative uncertainties achieved. 

Year 
Plank  
constant 

Achieved relative 
uncertainty 

Absolute 
uncertainty 

h changes 
range 

Comparative 
uncertainty 

 
 
References h·1034 rh·108 Δh·1042 Sh·1040 Δh / Sh 

2007 6.6260689124 3.6 23.85  
 
 
 
2.3 

0.1037 [18] 
2007 6.626071213 20 132.5 0.5762 [19] 
2010 6.6260695729 4.4 29.2 0.1268 [20] 
2011 6.62606912 29 192.2 0.8355 [21] 
2011 6.626070082 3.0 19.88 0.8643 [22] 
2014 6.626069793 4.5 29.82 0.1296 [23] 
2014 6.6260703412 1.44 9.54 

 

0.0415 [24] 
2015 6.62607004081 1.2 7.95 0.0346 [25] 
2016 6.62606983 3.4 22.5 0.0980 [26] 
2017 6.62606993489 1.3 8.61 0.0374 [27] 
2017 6.62607013360 0.91 6.03 0.0262 [28] 
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The choice of the author of (hmax- hmin) seems subjective and arbitrary. However, as already noted in 
3.4, the magnitude of the product of absolute uncertainty in the measurement of the investigated 
quantity and the interval of its changes is fixed for a specific CoP. Therefore, the choice of the interval 
of observation of the measured quantity will not affect the final calculation of the recommended relative 
uncertainty. That is why, it can be argued that an objective, mathematically sound statement is given. 
We present the analysis of the Plank's constant measurements to convince readers that this metric is 
universal and, surprisingly, the results are trustworthy and not accidental. 

It is seen from the data given in Table 1 that the findings presented in [29] are only partially 
confirmed. The fact is that in these studies there has been a dramatic improvement in the accuracy of 
the measurement of the Planck constant during the last decade. This is authorized as true when based 
on calculation of the relative uncertainty. At the same time, there was no mention of the Planck 
constant’s achievable true-target value. Perhaps, this situation has arisen as a result of unaccounted 
systematic errors in these experiments. At the same time, it must be mentioned that, most likely, the 
exactness of Planck’s constant, like other fundamental physical constants, cannot be infinite. Therefore, 
the conclusion is that there is room for further development to resolve these differences and find new 
ideas for a watt balance system with a more universal application, since the next generation of watt 
balance experiments is expected to become kilogram realization standards. The historical record suggests 
that there is still a need for proof that the Planck constant results are finally reproducible at an 
acceptable uncertainty [29].  

In order to judge the data by the comparative uncertainty according to the proposed information-
oriented approach, we need to calculate the lowest comparative uncertainty εLMTI for electro-mechanical 
processes (CoPSI ≡LMTI), which are usually used for the Plank constant measurements. In this case, 
it is required to equate its partial derivative with respect to z'- β', to zero. We can obtain:  

 ( ) ( ) ( ) ( ) ( ) ( )21 ,pmm SI SIZ
S z z z z z

β
∆ β µ β β µ β β

′ ′−

′′   ′ ′ ′′ ′′ ′ ′ ′′ ′′ ′ ′= − + − − = − − −    
  (11) 

 ( ) ( )21 0,SI z zµ β β ′′ ′′ ′ ′− − − =  
  (12) 

 ( ) ( )2
.SIz zβ µ β′ ′ ′′ ′′− = −   (13) 

Thus, taking into account (7), (9) and (13), we get 
 ( ) ( )1 2 4 (7 3 9 5 ) 2 4 468,l m t iz e e e eβ′ ′− = ⋅ ⋅ ⋅ − − = ⋅ ⋅ ⋅ − − =   (14) 

 ( ) ( )2 2468 38,265 5.723873.SIz zβ β µ′′ ′′ ′ ′− = − = =   (15) 
where "-1" corresponds to the case when all the base quantities exponents are zero in formula (1); 
dividing by 2 indicates that there are direct and inverse quantities, e.g., L1 is the length, L-1 is the run 
length, and 4 corresponds to the four base quantities L, M, T, I. 

Then, one can calculate the minimum achievable comparative uncertainty εLMTI 

 ( ) 468 38,265 5.723873 468 0.0244.LMTI pmm LMTI
Sε = ∆ = + =   (16) 

In the next step, we can argue about the order of the desired value of the relative uncertainty of COPSI 
≡ LMTI. For this purpose, we take into account the following data: (εmin)LMTI=0.0244 (16) and Sh 
=2.3·10

-40 (m²·kg/s²) (10). Then, the lowest possible absolute uncertainty for COPSI ≡LMT equals: 
 ( ) ( )

LMTI

40 42
min min 0.0244 2.3 10 5.61 10 .hLMTI

Sε − −∆ = ⋅ = ⋅ ⋅ = ⋅   (17) 

In this case, the lowest achievable relative uncertainty (rmin)LMTI for COPSI ≡LMTI is as follows: 
 ( ) 8

min min mL aM x minTI( ) ((h h ) 2) 0.85 10 .
LMTI

r −= ∆ + = ⋅   (18) 

This value is in excellent agreement with the recommendations mentioned in [28], 0.91·10-8, and 
should be satisfactory to the existing mass standards community. In this way, the ability to predict the 
Planck constant value by using the comparative uncertainty allows us to improve our fundamental 
comprehension of the complex phenomenon as well as to apply this comprehension to the solution of 
specific problems.  

It is obvious that such findings will cause a negative reaction on the part of the scientific community. 
At the same time, an additional view of the existing problem will, most likely, help to understand the 
existing situation and identify concrete ways for its solution. The development of a larger number of 

26 New Horizons in Mathematical Physics, Vol. 2, No. 2, June 2018

NHMP Copyright © 2018 Isaac Scientific Publishing



designs and improvement of the various experimental facilities for the measurement of Planck’s constant 
is an absolute must [30]. Reducing the value of the comparative uncertainty of the Planck constant 
obtained from different experiments, to the lowest achievable value of 0.0244, will serve as a convincing 
argument for the professionals involved in the evolution of the SI. 

It must be mentioned that CODATA has developed a method of doing the average, which is complex. 
In the frame of the CODATA technique to determine the recommended value of the relative uncertainty 
of this or that fundamental physical constant, a detailed discussion of the input data and the 
justification and construction of tables of values sufficient for the direct use of the relative uncertainty 
are conducted using modern advanced statistical methods and powerful computers. This, in turn, allows 
one to check the self-consistency of the input data and the output set of values. However, at every stage 
of data processing, an expert conclusion is also used, which is based on intuition, accumulated 
knowledge and the cumulative life experiences of scientists (one’s personal philosophical leanings [31]).  

The principal difference of the information-oriented approach in comparison with the “statistics–
expert” CODATA technique is the following. Within the framework of the presented approach, a 
theoretical and informational grounding and justification are carried out for calculating the relative 
uncertainty. A detailed description of the data and the processing procedures does not require 
considerable time, high quality staff and a significant budget. 

5   Conclusions 

It is obvious that reconciling the probabilistic subatomic world with the macroscopic everyday world is 
one of the great unsolved problems in physics. The use of the µSI-hypothesis opens the opportunity to 
combine these two worlds.  

The necessary and sufficient condition for choosing the right number of quantities recorded in the 
mathematical model describing the Planck constant measurement process is introduced. 

The estimate of the a-priori achievable comparative uncertainty of the mathematical model caused by 
the limited number of the chosen quantities can be a peculiar metric for the adequacy of the accuracy of 
the physical experiments for the Planck constant measurements. 

The method offers a tantalizing hint for more reliable predictability of the Planck constant and its 
relative uncertainty values than we might otherwise have anticipated by using the relative uncertainty 
calculated according to the “statistics–expert” CODATA technique.  

The consequences of our conclusions are transferred to all models in physics and engineering, in which 
the above limit, due to a finite number of the quantities considered, is hidden, including measurement of 
fundamental physical constants, heat- and mass-transfer, thermal energy storage systems, and global 
climate models [13], where a compromise between complexity and achievable accuracy of model is 
always required. At the same time, SIµ -hypothesis is not inherent in nature; in other words, it is not a 
fundamental principle of nature. Indeed, it is not at all obvious that we can describe physical 
phenomena with the help of a single picture or mental representation. We form our models and 
representations by drawing inspiration from everyday experience. From this, we extract certain concepts, 
and starting from these, we invent, by simplification and abstraction, some simple models and clear 
concepts, which we then try to use to explain phenomena. 
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