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Abstract In this paper, we study the initial boundary value problem for a two-phase with a
magnetic field in a bounded domain 2 C R3. We mainly use the energy method to obtain the
global existence of the strong solution and the decay estimate, when the initial value reaches the
equilibrium state in H?(£2). At last, we also obtain large time behavior of the solution.
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1 Introduction

1.1 Background and Motivation

In this paper, we are interested in a two-phase system with magnetic field model the motion of the
mixture of the fluid and particles in a smooth bounded domain 2 C R3. The system as following

ng + div(nu) = 0,
pr + div(pu) = 0,

[(p+n)uly +div((p+n)u@u) + VP — pAu — (A + p)Vdivu = (V x H) x H, (1.1)
H, —Vx(uxH)=-Vx ¥V xH),
divH =0,

with the initial and boundary conditions

(n, p,u, H)(x,0) = (no, po, uo, Ho)(z), =€ £,

u(z,t)|on =0, H(z,t)|lsn =0, 12
ﬁ Jono(z)dz =ng > 0, .
ﬁfn po(z)dz = po > 0.

Here, t > 0 and * = (21,%2,73) € 2 C R3. The variables n, u = (uj,u2,u3) and H denote the

density of the fluid, the velocity field of the fluid and the magnetic field, respectively. p is the density

of the particles in the mixture which is related to the probability distribution function F(t,z,£) in the
macroscopic description through the relation

p(z,t) = /]R3 F(z,t,&)dE.

P = P(p,n) is pressure satisfying
P=p*+n", (1.3)

for « > 1 and v > 1. The viscosity coefficients p and \ satisfy

>0, 3\+2u>0. (1.4)
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The constant v > 0 is the resistivity coefficient.
System (1.1) is derived from the Vlasov-Fokker-Planck/compressible magnetohydrodynamics equa-
tions by Wen and Zhu in [26] , taking the form of

(ne)e + div(neue) =0,

(nete)t + div(neue ® ue) — pAue — (p+ A)Vdivu, + VP,
=(Vx H)x He+ 1 [o0(v—u)Fedo,

(He)t =V x (ue x He) = =V x (vV x H),

divH. =0,

(F)i +v - VF, + Ldiv[(uc —v)F. = VF] =0,

Carrillo and Goudon in [3] applying ideas when the scaling limit ¢ — 07. The system (1.5) describes
the motions of the mixture of fluid and particles in magnetic field. This type of fluid-particle interaction
model can be used to engineering, medicine, geophysics and astrophysics.

In the absence of a magnetic field, Wu and Zhang in [25] investigated the viscous two-phase model
and get the global existence and asympotic behavior of strong solution in a bounded domain with no-slip
boundary. For the incompressible Vlasov-Navier-Stokes system without the Fokker-Planck term, Boudin,
Desvillettes, et al. obtained the global existence of weak solutions on periodic domain in [2] and by Yu on
bounded domain in [27]. To the free boundary problem, When the liquid is incompressible and the gas is
polytropic, the existence, uniqueness, regularity, asymptotic behavior and decay rate estimates of (weak
or classical) solutions have been studied in [6,8,9,18]. Evje-Flaatten [7] obtained the global existence of
weak solutions, when the both of two fluids are compressible. As a generalization of the results in [7] to
high dimensions, when the initial energy is small and the initial density is bounded far away from the
vacuum, Yao, Zhang and Zhu proved the existence of the global solution to the 2D model in [28]. For
the Cauchy problem of the liquid-gas two phase flow model:

my + div(mu) = 0,
ny + div(nu) = 0, (1.6)
(mu)s + div(mu ® u) + VP(m,n) = pAu+ (A + p)Vdivu,

When viscosity is present, Yao, Zhang and Zhu studied the existence and asymptotic properties of the

system (1.6) with initial values, which is widely used in the petroleum industry [28]. Evje and Karlsenre

explore the well and pipe flow, the introduction of a novel two-phase variant of the potential energy

function needed for obtaining fundamental a priori estimates and derive the existence of weak solutions.
This method plays an important role in the single-phase Navier-Stokes equations|7]. Hoff demonstrated

the weak solution of the compressible Navier-Stokes equation that the initial velocity is small on L? and

bounded on L?" as the initial density approaches a constant on L? and L*°, we can refer [12,13,14] for

more detail. When the initial is vacuum and small enough, Guo, Yang and Yao obtained the existence

of the global strong solution [11,16]. When both the initial liquid and gas masses connect to vacuum

continuously, Zhu et al. studied the system (1.6) with constant viscosity coefficient, and got the global

existence of weak solution and the uniqueness of the weak solution by the line method. At a distance

from the vacuum and a small initial energy, the global existence of system (1.6) is obtained by Yao,
Zhang and Zhu. The global classical solutions were first obtained by Matsumura and Nishida [19,20,21]

for initial data close to a non-vacuum equilibrium in H?(R?). In particular, the theory requires that

the solution has small oscillations from a uniform non-vacuum state so that the density is strictly away

from the vacuum and the gradient of the density remains bounded uniformly in time. Later, Hoff and

Huang et al.[15] studied the problem for discontinuous initial data. When there is an external force in

the system, Zhang and Fang prove the global existence of weak solutions for the 2D compressible Navier-
Stokes equations with a density-dependent viscosity coefficient (A = A(p)) and show that the viscosity
coefficient y plays a key role in the Navier-Stokes equations, when the condition of y=constant is constant
will induce a singularity of the system at vacuum [29].

In recent years, the study of two-phase flow models with magnetic fields in bounded domain is

becoming increasingly popular [4,10,17,22,23,30]. The free boundary value problem for two-phase liquid-
gas model with mass-dependent viscosity coefficient when both the initial liquid and gas masses connect
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to vacuum with a discontinuity is studid by Zhu and Yao in [31]. In this paper, we use traditional energy
estimation methods, but the boundary conditions are not smooth enough, so we refer to [24] deal with
the spatial derivatives and using the local geodesic polar coordinate.

1.2 Main Results

We first rewrite system (1.1) in a more suitable form. Let
c:=p*—n", m:=p+n. (1.7)

By a direct calculation, from (1.3) and (1.7),, we have

p:<P;—c)‘i, n:<P2—0>$7 (1.8)

and

Since

1
(VxH)xH=(H-V)H — 5V(|H|2),
AH = VdivH — (V x H) x H,
(Vxu)xH=(H- -V)u—(u-V)H + udivH — Hdivu,
then the system (1.1) clearly can be written in terms of the variables (¢, P,u, H), that is

¢t +u - Ve = Bydivu,
P, 4+ u - VP = Bydivu,
mu + (mu - V)u+ VP = pAu+ (A4 p)Vdive + (V x H) x H,
H;—vAH = (H -V)u— (u-V)H — Hdivu,

(1.10)

with the initial and boundary conditions
(¢, Pu,H)(x,0) = (co, Po,ug, Hp)(x), = (x1,22,23) € £2,
u(z,t)on =0, H(z,t)|lon=0, t>0, (1.11)
|le\ [ Podz = Py,

where By= — (22P+%4¢), Bo= — (2f2P+25%¢) and P is a positive constant due to (1.3).

Theorem 1.1. Assume the initial boundary value (co, Po— Py, ug, Ho) satifies the compatibility conditions,
Z'.e.@iu(())bQ =0, 8£H(0)|89 =0,1=0,1. Where 8£u(0)‘89 =0, 3£H(0)|6Q = 0 show the lth derivative
at t = 0 of any solution of the system (1.1)-(1.4), as calculated from (1.1) to yield an expression in terms
of co, Py, ug, Hy. Then there exists a constant €y such that if

(| (co, Po = Po, uo, Ho)||, < €0 (1.12)

then the initial boundary value problem (1.1)-(1.4) admits a unique solution (c, P,u, H) globally in the
time with P > 0, which satifies

P —P,ceC’([0,00); H*(£2)) N C ([0, 00); H (£2)),

0 2 1 1 2 (1.13)
u, H €C7([0,00); H*(£2) N Hy(£2)) N C7([0, 00); L*(£2)),
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where )
P(t) = —/ P(z,t)dz. (1.14)
2] Jo
Moreover, there exist two positive constant C1, Cy such that for any t > 0, it holds that

(P = Pu, HY(D)|2 + |04 (P — P,u, H)®)|

_ ) (1.15)
<C1||(Po = Py, uo, Ho)(t)H2 exp{—cat},
¢
= 2 = 2
2= PO+ [P~ PR + G )

0 (1.16)

= 2

<C1 [|(Po = Po, uo, Ho) ()],
= = 2
lell, < Cy exp {C4 || (Py = Po, uo, Ho) ||, } (||uo|\2 + (P — PO,uO,HO)H2> : (1.17)
Finally, 75lim P(t) exists and let tlim P(t) = P, the following convergence rate holds
bde el e el

|]5 - P(t)| S C()H(C(),PO - ]5, Uuop, H())”%{z exp{—not}. (118)

Notations. Before we start the proof, let’s introduce some notations in this article. C' denotes the generic
positive constant depending only on the initial data but independent of time ¢. In Sobolev spaces, the
norms H™(R3) and W™P(R3) are denoted respectively by || - |g= and || - ||wm.», for m > 0 and p > 1.
Especially, when m = 0, we will simply use ||-||2 and ||-||Le. Finally, V = (81, 82,85), 0; = 0, (: = 1,2,3)
and for any integer [ > 0, V'f denotes all derivatives of order [ of the function f.

The rest of this paper is organized in the following way. In section 2, we will show some useful
inequalities. In Section 3, we obtained some a priori estimates and hence the global existence by the
energy estimate method and low-high-frequency decomposition. At the same time, we finished the proof
of Theorem 1.1. As a by-product, we also get the time decay estimates of the solutions.

2 Preliminaries

In this section, we first introduce some Sobolev’s inequalities that will be used frequently in later articles.

Lemma 2.1. Let 2 be a bounded Lipschitz domain in R and f € H?. It holds that

@) 1w < CIFl,.
@) e < CIFIL 2 <p <6, (21)

for some contants C > 0 depending only on 2.

The classical energy estimates don’t work in estimating the spatial derivatives of the solutions with
the slip boundary condition. In order to get the estimates on the tangential derivatives of the solutions
(P, u, H), we refer to the following lemmas on the stationary Stokes equations, c.f. [21].

Lemma 2.2. [25] Let £2 be any bounded domain in R3 with smooth boundary. Consider the problem

—pAu + VP =g,
divu = f, (2.2)
u|6_Q = 07

where f € H**1(02),g € H*(k > 0). Then the above problem has a solution (P,u) € H**! x (H*2n H})
which is unique modulo a constant of integration for P. Moreover, this solution satifies

[ullz oo + IVPIG < C (11740 + llgl?) - (2.3)

Lemma 2.3. [5] Assume U is a bounded, open subset of (R™). Suppose u € Wy (U) for some1 < P < n.
Then we have the estimate

||u||Lq(U) <C ||Du||LP(U) (2.4)

for each q € [1,p*], the constant C' depending only on p,q,n and U.
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3 Global Existence

In this section, we will prove the global existence and large time behavior of the solution with the small
initial data. The global existence of solutions to the initial boundary value problem (1.10)-(1.11) will
be established from the combination of the local existence result with some a priori global estimates by
employing the standard continuity arguments.

Proposition 3.1. (Local existence). Let (co, Po,uo, Ho) € H*(§2) such that

inf {Py(z)} >0, duol,,=0, 9jHol,,=0, =01
zes?

o0

Then there exists a positive constant C and Ty > 0, such that the initial value problem (1.1)-(1.4) has a
unique solution (¢, Pyu, H) € C([0,T); H*(£2)) satisfying

inf  {P(t,z)} >0, ¢,P,€C([0,T);H (1)),
te[0,T],zef2

u, H € L*([0,T); H*(02)), uy, H; € C([0,T]; L*(£2)).
Furthermore, the following estimates hold,
le(®)ll, + 1Py + [w®lly + [HOlly < Cllieolly + 1Pl + lwolly + 1 Holly).
Remark 3.1. The proof can be done by using the standard iteration arguments.

In what follows, we will establish some a priori estimates of the solution (P, u, ¢, H). Firstly, we make
the a priori assumption that

H(P—]B,U,QH)(t)HQ—i—\P(t)—ﬁ(ﬂ <eg, forany t>0, (3.1)
where 6 > 0 is sufficiently small. By the Sobolev inequality, we have
1= _ 1
§PO < P(t) < 2P, ol <m((t) <C, forany t>0. (3.2)

This will be often used in the rest of paper. In order to derive a priori estimate, We first use the energy
estimation method to estimate the lower derivative of (P, u, H).

Lemma 3.1. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C such
that for any t > 0, it holds

H2
2dt/m|u\ +

<Ce(|IVP|7= + [ Vullze + [VH|72)-

(P 5 Py dac—l—u/ \Vul? dz + (1 + A) / |divu|® d (3.3)

Proof. Multiplying (1.10), and (1.10), by u and H respectively, then summing up and integrating on {2,
using integration by parts, we get

2dt/m|u| +H2dx+u/ Vul? dm—l—(u—l—/\)/ \divu|? da
+u/ VH|? da:+/ (V x H) x H - udz (3.4)
7 2
:/ ((H - V)u— (u-V)H — Hdivu) - Hdz,
I7;

In order to get the estimate of P, we shall deduce the equation of P. By integrating (1.10), over {2 gives

/Ptdx—i—/ u-VPdac—i—/ Baodivudzx
10 Q 17

(3.5)
:/ Ptdx—i—/ u-VPda:—/ u - VBodxr = 0.
0 Q 19
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Therefore,

Pidx = / u-V(Bs — P)dx.
7} 7}

according to (1.14), we have

EWFW%Aa@@mzfﬁéww&—mw.

So,

[P < Cllullpz (IVB2ll 2 + IV P 2)
< Cull gz (IVellgz + VP 2) -

Equation (1.10), is obtained by deformation

P—P), Py + (By — By)di VP
Q—&—dwu—l— P; + (Bs 2)d1vu+u \Y _o
BQ B2
Multiplying the above equality by P — P and integrating over {2 gives
1d P — P)? _
—— / gdm + [ divu(P — P)dx
2dt Jg By 1)
1 P — P)*(By)pP, P; + (By — By)di VP _
:_7i/( )_( 2)p tdw—i—/ » + (B2 2_)dlvu+u Vv (P — P)da,
2dt 0 B% 2 B2
Adding (3.4) to (3.10), we find
(P m

2dt/m|u| + H? + dm—i—,u/ \Vul® dz + (u+ A) / |divu|? dz

(P — P)%(By)pP, P, -VP _
= / )(”wa% iiiz%P—mm
24t B2 7} B

+/ (Bz__B2>divu(P—]5)dx+/(((H~V)u—(u-V)H—Hdivu)-H+V|VH|2)dx
o)

By
=0 +1+ I3+ 14

0

For the first term on the right

I <

Bl o py,

=12
< Ol gz (IVell 2 + IVPIl2) ||P — PJ[;.
< Ce||VP[;..

and
C _ _ _
L < 'B| (1B 1P = Pl + lull s IV Pl | P~ Bl .)

< C (Il (19ell s + IV Pl 2) [P = P o + [Vl 19717

< Ce (I Vullfs + IVPI:)

Copyright © 2021 Isaac Scientific Publishing

17

(3.8)

(3.10)

(3.11)
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By the same way,

(B> — Bo)
By
(B2 — By)
By

divu(P — P)dx

ISS/
o

<C

vl P Pl (3.14)
L3
< Ce |[divul| > [[VP[ 2
< Ce (|Vulf + IV PI3:) -
and the last term can be estimated by
Iy < [[H| ps [IVull g2 [[H | o + llll s IVH o [[H || o + 1] s I dived| g [[H| Lo
) ) (3.15)
< Ce (IVullz: + IVH]:)
Plugging (3.12)-(3.15) into (3.11) yields (3.3). O
Next, we give the energy estimate of the time derivative for (P,u, H).

Lemma 3.2. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C such
that for any t > 0 it holds

1d s
b H
sar [, "l

+(u+)\)/ |divut|2daz—|—1// |V H,|? dz
o o

<Ce(IVull} + || Va7 + [ VHill7z).

P, — P,)?
gjgflldx+4a/|Vmde
2

(3.16)

Proof. Differentiating (1.10)5 — (1.10), and (3.9) with respect to t, then multiplying the result by w;, H;
and (P — P); respectively, then summing up and integrating on {2, we get

1d P, — P,)?
— m|ut|2+Hf+Md$+ﬂ,/ \Vut|2dx
2dt 0 2 (9}
+(u+)\)/ \divut|2d:c+u/ \VH,|? dz
2 2
— PV2(By) P
:_1/ (mt ‘Ut‘2— (Pt Pt) (BZ)PPt>dx_/ ut(meu)tdx
2 /o (By)? 0 (3.17)
P, + (By — By)di .VP _
# [ (v ) sy - [ (BEEREBIENECTEY (1 g
Q Q By ¢

—|—/ [(H-Vu)iH; — (u- VHy)H, — (Hdivu), Hy] dz
17

=N+ o+ I3+ Ji+ s

We use the boundary conditions u|,., = 0, Hy|s,, = 0. According to (3.1), (3.2) and Lemma 2.1, Holder’s
inequality and Poincaré inequality, we obtain

DB \2(B.\ D
h= /div(mu) |Ut|2+ (P Pt,) (B2)p Pt dx
“ (B2)?
_ DY2(R.\.P

- /2qutut— (P = P)"(Ba)pPi|

o 5 -

(32)15 t 2 — 2 .

< CHmHLoo ||U||L3 HVUtHLz ||ut||L6 + W (||Pt||[,2 + HPI‘/HLz)

< Ce ||Vl s [|Vuelf; 2 + Ce ||V}
< Ce(||Vull? + [ Vue|32)
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By (3.1) and (1.10), yield

[Pl p2 < Clu- VP2 + [[Vull12)
S C(llull g VPl g2 + [ Vul12) (3.19)
<C|Vul,.

and

= [ (—=(Vmu+ mdivu)u - Vuug + mugVuug + mu - Vugug)de (3.20)

2 .
<C ([IVmll s lullZoe IVull g2 fluell o + lImll Lo l[divel g2 ull g [1Vull g [l o

/\b

2
Flmllpee Vull ps luelzs + llmll g el gs [Vl 2 ||ut||L5)
<Ce(||Vulzz + [Vl 72),

where is using
Vs <[[Vmll, < C([VPl;, +[IVelly) .- (3.21)

Similarly,
J3 :/ ut((V X H) X H)td.’IJ
2

0]

, (3.22)
< el po [ Hell o IVHI s + [lell o [1H | s [V Hell 2
< lwell o 1 Hell o IV HITs + leell o 1H N s [V Hol 2
< Ce(|VH 72 + [ Vuul|72)-
Then, combing (3.1), (1.10),, (3.7) and (3.19)
_ 1
1Pul < o7 [ (-9 (Ba = P+ V(B2 = P)y)
Q
< Cllluell gz (VP gz + 11Vellp2) + 1Vull o (1Pl 2 + lleell g2)] (3.23)
< Ce([luellpz + IVl gz + lleell p2)
< Ce ([luell g2 + IVl 2),
Finally,
P, + (By — By)di VP _
J4:/( y + (Ba 2_)d1vu+u \Y4 ) (P, — P)da
Q By ¢
- / {Pi + [(B2) pP; + (Ba)ccr — (B2) p P divu — (By — Ba)divuy +u- VP} (P, — Pt)dm
e Bo
Q By
I / {Pt+(Bg —Bg)le’U/—FUVP} (B2)Ppt(Pt_Pt)d1;
o (B2)?

<Ce(||Vaull? + ||V 32)-
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Substituting (3.18), (3.20), (3.22), (3.24) into (3.17) and we get (3.16). We complete the prove of Lemma
3.2. O

Because the boundary conditions are not smooth, the classical energy estimates can not be applied
directly to spatial derivatives. To solve the difficult, we need to localize 0f2 when estimate the boundary
solution. Detail description, we will modify the standard technique developed in [20] that involves sepa-
rating the estimates of solution into that over the region away from the boundary and near the boundary.
Let xo be an arbitrary but fixed function in C§°(£2). Then we have the following energy estimates on
the region away from the boundary.

Lemma 3.3. Under the conditions of Theorem 1.1 and (5.1), there exists a positive constant C such
that for any t > 0, it holds

1d VPxol?
—— m|VuXo|2+ﬂ+v|VHXO\2dz
24t o X
2 . 2
—l—,u/ |V2uXO‘ da:—&—(,u—&—)\)/ |Vd1vuX0|2dx+/ ’VQHXO‘ dx (3.25)
Q Q Q :

<C= (| Vull} + [VHIZ + [V PI? + |Vl

+C [ Vull g (V2| 2 + VPl 2) + IVH 2 |V H] | -

5 2

1d m|V2uX0|2+M+U|V2HX0f2dx

2dt J,,

—i—u/ ‘V?’UX()’de—i—(,u—i—)\)/ }VQdivuX()’de—i—/ ‘V3HX0’2dx (3.26)
fo) fo) Q

<Ce (IVull} + IVHIZ + IVPI; + [ Vul}2)
+C|[V2ul| o ([VPull o + V2P| o) + V2 H| 2 [VPH] o

Proof. Differentiating (1.10)5, (1.10), and (3.9) with respect to x;, multiplying the resulting equations
by s, X3, Hy, X2, P, X2 respectively, then summing up and integrating on {2, using integration by parts,
we have

1d
2 dt

—|—u/ |Vu$iX0|2dx—|—(,u+)\)/ |divu$iX0|2dx—|—/ |V H,,xo|” dz
Q o o

Py, xol?
/ m|u$7¢X0|2 + | EZXO| ‘FU|]¥ZH,XO|2dJC
Q B>

1 P.xol? (Bo) 5P,
:7/ me |umiX0|2—| ,X0|_(2 2)p tdx—/ M, Ut + (M- V) g, Uy, Xod
2 Jq B3 Q

—/Q(VXH)xHVumixgdx—/Q(VxH)xHuziVngac

(3.27)
— ,u/ Uy, Vg, VXadr — (p + )\)/ divug, ug, Vxida
Q Q

+/ PxiumiVX(%dx—v/ V2H - H, Vxidr

2 2

+ / V[(H-V)u— (u-V)H — Hdivu] H,,x3dx
2

<Ce (IVull} + IVHI} + IVPI; + Va2
+C(Vull 2 (|[V?u) 2 + IVPIl2) + IVHI 2 ||V H] | o

So, the Lemma 3.3 can be finished. O
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Now, let us estimates near the boundary. Similar to refer [20], we need a more argument using the
trick of estimating the tangential derivatives and the normal derivatives separately. We choose a finite
number of bounded open sets {Oj}j.vzl in R?, such that 812 C Uévlej. In each open set O, we choose
the local coordinates y = (y1,y2,y3) as follows:

1. The surface O; N AS2 is the image of a smooth vector function 27 (y1,y2) = (27, 23, 25)(y1, y2) (e.g. take
the local geodesm polar coordinate), satifying

‘zéll =1, zgl -252 =0and ’z§2| >0>0 (3.28)

Where 4 is a positive constant independent of 1 < j < N.
2. For any x = (1, 2,23) € O, is represented by

zi = () = ysnl (27 (1, 92) + 22 (y1,92)), fori=1,2,3 (3.29)

where 77 (y1,y2) = (7,13, 73) (2% (y1, y2)) represents the internal unit normal vetor at the point 27 (y1,y2)
of the surface 0£2. In this paper, We omit the subscript j in what follows for the simplicity of presentation.
For k = 1,2, we define the unit vectors

Zyz

€1 = 2y, and ey = ol
Y2

Then Frenet-Serret’s formal gives that there exist smooth functions (a1, 81,71, a2, B2,72) of (y1,y2) sat-
ifying

% i

b €1 0 —Y1 —Oq €1

Em e2] =7 0 =B e | ,
n a; f1 0 n

o [& ' 0 —v —a2 er)’

Em e2 ] =7 0 —f e |
n as B2 0 n

where e!, denote the i-th component of e,,. An elementary calculation shows that the Jacobian J of the
transform (3.29) is

J =Wy, XUy, -0 = |zy,] + (0n]2y,| + B2)ys + (a1 B2 — 2B1)y3 (3.30)

By (3.30),we have the transform (3.28) is regular by choosing y3 so small that J > g for some positive 4.
Therefore, the inverse function of ¥ (y) := (¥, ¥y, ¥3)(y) exists, and we use y = ¥~ *(z) denote it. Using
a straightforward calculation, (y1, Y2, y3)., can be expressed by

=

)'Ll
zyl ¥(W2 X Wy )i :%(Ae +Be ) =: 114,
Oz, Y2 = ¥(W ys X Wy, )i = 7(06 + De 2) =: o, (3.31)
z Ys = 7(W y1 X Wyz) =1 = T4,

Where A = |zy,| + fayz, B = —ysas, C = —PFiys, D =1+ a1y3, and J = AD — BC > . It’s easy to
find out, (3.31) gives

3
ST a3 =0’ = 1,rirsi = rars = 0,J% = (AC + BD)? — (A% + B2)(C? + D?) (3.32)

and

where we have used the Einstein convention of summing over repeated indices. Therefore, in each O;,
(1.10), — (1.10)4 can be rewritten in the local coordinates (yi,¥2,¥3) as follows:

dP B
EVi= T+ J2 [(Aer + Bea) - uy, + (Cey + Deg) - uy, + Jn - uy,] = g,
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E* :=muy — ﬁ [(Az + B?) uyyy, +2(AC + BD)uylyz +(C% + D?)uy,y,
AdP
+ J?Uy,y, | + one order terms of u+ ~ (A61 + Bey) prAce +P
J 82 dt Y1
1 W+ AdP w+AdP
+ —=(Cey +D -~ 4+ P — — + P| =h,
J( e+ Dea) [ By dt Lz { By dt LS
where
d . L
% = 0¢ + u - V(denotes the material derivative),
_(B2 — Bg)divu
)\
h=mu-Vut £ Vg+ (V x H) x H.

2

Let us denote the tangential derivatives by 0 = (0y,,0y,) and XJ be arbitrary but fixed function in

C§°(0;). Obviously, z;0%u = 0 on &Qj where 0 < k < 2and (2 ={yly=v"1(2),z € 2; =0; N N2}.

Estimating the tangential derivatives in the similar way as the above lemma we have

Lemma 3.4. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C such
that for anyt > 0,1 < j < N, it holds

d OPx;|? ar |?
T m |Oux;|* + ﬂdy +/ |OVux; | dy + / ladtxj dy
_Q;l B2 Q;l -Q;l (334)
<Ce (IVull} + [ Vuel3z + IVPI3) +C 1 Vull 2 (1Vull, + [VPIl2),
d 2P|’ P |?
7 m|32qu|2+‘X]|dy+/ {82Vuxj|2dy+/ ‘3 G X dy
t By o o t (3.35)

2 2 2
<Ce (IVull+ [VaeliZe + IVPI) +C [ 92l (190l + V2P 1)
Next, we begin to deduce the estimates of derivatives in the normal directions.

Lemma 3.5. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C such
that for anyt > 0,k +1=1,k,1 > 0,1 <j < N, it holds

2
d dP
7 |Py3XJ| dy + /971 ‘(dt) Xi| dy
i v (3.36)
2 2 2 2 2 2
<C (IVulifs + lwl3a +e (IVPIE + I9ull} + IVHZ: ) + / _10ux| ] dy,
J
d dP ’
2
7 |3k3l+1PXj| dy + /Q_l 8k3?l!;r1 < 7 > Xi| dy
i vs (3.37)
2 2 2 2 2 2
IVl + lluell} + & (IVPIE + |92} + IVEIZ:) + /Q oM, Vux| ] dy,
Proof. First, we using 0y, (EP —g) =0 and n(E* — h) = 0, that is the following forms:
(le)ys + & [(Ael + Bez) - ty,y, + (Cer +P€2) CUyyys N Uy (3.38)
+one order terms of u = gy, = [—(Ba — Ba)divuly,,
M — % [(A2 + Bz)nuyly1 + 2(AC + BD)nuy,y, + (C? + Dz)nuy2y2 + J2nuy3y3} (339)

one order terms of u—+ {“];;A dP 4 P} = nh,
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In order to eliminate u,,,, in equation (3.38), we use (3.38) x BLQ + (3.39) yields:

dP L
(dt> + Py3 = - ﬁ [(A2 =+ B2)’7uy1y1
Y3

+2(AC + BD)nuy, 4, + (C* + D)y, ]
— nmug — % [(Ael + Be?) *Uyiys + (061 + De?) *Uyyys + J77 : uysys]

2+ A
By

(3.40)

+ one order terms of u+ nh + Bigy?’ = @.
2

Multiply that by X? (%)y3 and integrating on {2, we obtain

2
- — Py x| dy + —= — j
2 di /le| v Xil™ dy By o dt e Xj

dP
/Qil —(u- VP)ySPygxf + (dt) fﬁx?dy.
j Y3

:ZK1+K2.

dy

(3.41)

Estimate each term at the right end of the above equation,

1
K < bl B Pdivd)ay
2 o1

J

Uy - VPP, x2d
/njl . v Xs (3.42)

< C||Vull, |[VP|} < Ce||VP|T,

2
) lt v XJ

2
2u+)\/ (dP)

<—= - X
2B Q;I dt Y3

2 2 2 2
+ C(IVullpz + luellze + e [Vully + IVH]L2)-

ary
dat )N

IVul2e + llusllZe + (I Vull? + IV PIE + [VH|2:) + /Q - |3Vuxg'|2dy] ,

J

and

2 A
K, < pt /
o7t

dy+C/ |®x;|2dy
-t

(3.43)

dy+C/ |OVuy; > dy
o7t

Substituting (3.42) and (3.43) into (3.41) get

— P, 1% d + _
dt 9;1 | y3XJ| Yy B2 Q;l

2
dy

(3.44)
<C

By the same way, using 9*0., to (3.39), multiplying the resulting equations by 9*dL (4£) x3, then

t
when k + 1 = 1 we have

2
d > 21+ A dP
- 8kal+1p 1% d _ / akalJrl b A d
dt Jor 10700 Pxal dy+ =5 = 1080 WO
g i : (3.45)
2 2 2 2 2
<C |IVully + [luelly +e([[V2ul[; + VP + HVHHLzH/Qfl akﬂﬁégwxﬁdy] :
O
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Lemma 3.6. Under the conditions of 1.1 and (3.1), there exists a positive constant C such that for any
t >0, it holds

(I92ully. + [ 92H]]72) + 1V Pl

2 ar|® 2 2. 1|12 2 2 (3.46)
<Ce|[VH[p + C (||| + lluellzz + |20l 2 [ Vully + IVEL2 )
1
/ |8V2uxj’2dy+/ |8VPXj|2dy
ot ot
2 P |?
2
<Ce HV HHLz "‘C/Qf1 ’avdtxj dy (3.47)
J
2 2 2 2 2 dp 2
+.0 (IVall 4+ ull + 9P + |92l 19013 + 9P [ V57| + 1912 )
L
Proof. We consider the Stokes problem of equation (1.1), — (1.1), as following
divu = —B%%,
—pAu+ VP = (A + p)Vdivu — (muy + mu - Vu) + (V x H) x H, (3.48)
ulyn =0,
Where applying (2.2) to (3.48), it can get
2 2 dpP|?
2 2 2 2
[V2ul| . + VP72 < Ce(Vully [ VPul| e + luellze + IVH] ) + C Hdt (3.49)
1
For the equation (1.1),, we get the higher order energy estimates of H as
2 2 2 2
IV2H|}. < Ce (IVulif: + IVHI}:) + C IVH: (3.50)
Connecting (3.48) — (3.50), we get (3.46). Applying ;0 to equation (3.48), we have
div(x,;0u) = —x;0 (B%%) + Vx;0u,
—puA(x;0u+ V(x;0P) = —2uVyx;V(0u) — Ax;0u + V0P, (3.51)
—(A 4 )X VO(G) = xj0(muy +mu - Vu) + x;0 (V x H) x H),
Xjaub_(?;l = 07
Using the Lemma 2.2, same as the proof above, we finished (3.47) . O

Now, let’s start proving Theorem 1.1. We will do it by four steps.
Stepl: we first estimate the lower order derivatives for (P, u, H). Suppose D be a fixed but large positive
constant. Let D3 x ((3.3) + (3.16)) + D x ((3.25) + (3.34)) + (3.36), we can see

d P — P)? P, — P,)?
{D3/m|u|2—|—H2+(>—|—m|ut2+Ht2+(tt)da:
dt 7 By By
2 |VPxol 2 SURE 9 2
+D | m|Vuxo|” + —=—— +|VHxo| dz+ D [ |V?uxo| + |V?Hxo| dx
2 2 i9]
|5P}<j|2
B

2

N
+ ZDm |8uxj|2 +
j=1

+ 1Py ¢ + D (IVulfa + IVHIE + [ Vuell s + [V HI: )

2

<dP) N
I J
),

C
<CDe (||v2ulz, + IV2PllL. + [V2H][7.) + 5 (192l + 19 PIE:) + CD% ||Vl

2
+

dP
= d
dt XJ y

N
2
+ZD|8VUXJ-| +‘a o L

Jj=1

dP
+|v

(3.52)
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Substituting equation (3.46) into the above equation and using ‘fi—f = —DBsdivu, Young’s inequality,
poincaré’s inequality, we can find

d P — P)? P, — P)?
{D/ m|u\2+H2+g+m|ut|2+Hf+gdz
dt Q By By

|V1’?X0|2

+D/ m|Vuxo|® + +|VHX0|2dx+/ |V2uX0|2+|V2HXO|2dx
7 o

N
dPx
o3 [ mlawgl+ PP p By D (190 19 HI + 190 + 1)

N 2
P
+ Z/ OV, * + [|V2ul|7, + | V2H| S + VP32 + Hv dy
=172 dt |

2
<CDe || V2P|, +0H‘§

<CDe |22,
(3.53)

where D is enough large, ¢ is arbitrarily small.
Step2: In this step, we will estimate the higher order derivatives for (P, u, H). Let k = 0,1 =1 in (3.37),

by D x ((3.26) + (3.35)) + (3.37), we get

d ) IV2Pxol” ey g2
dt{/ﬂm|v UX0’+T2+|V HX0| dx

+ Z/ Dm|82uxj| + | | + |8Py3XJ| dy

2
dx

+D/ |v3u><o\2+yv3H><ol2dx+/ ’v2(§;XO
? 29 (3.54)

dy

N
dP
+ ;/le |82Vuxj|2 + ‘8thxj
<CDe (IVully + VI3 + IV PI; + [ Vul?2)
+CD [ V2ul|  (IVully + V2P| ,2) + CD ([[V2ul. + [ V2H]}.)

C (Ivalf} + fluell})
Let k=1,1 =0 in (3.37) and together with (3.3) implies that

o (dP
ACIIN

<0 (19l + el + IV PI=) + Ce (IVHI + [92la) +0 [

2

dy

’6233PX]'|2 dy + /
—1 Q;l

, (3.55)

dP
— d
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By the same way, D x (3.54) 4 (3.55), we have

“Ip2 [ v il ars S [ Dmlotu 4 V0l
dt{ /Qm| UXO‘+| X0| x+j§_:1/gjl m| UXJ| +T2 Yy

2

+D2/Q]V3u)(0‘2+‘V?’HX0|2dx+/Q‘V2Ci£xO dx

N
+Z/ D|6*Vuy,|* +
=l

<CDe (ku; FIVH|Z+[|VP|? + IIWtIIiz)

2

dP
v“‘ﬁxj dy (3.56)

+CD? |l (Iully + [92P| ) + €D (|IV2u]3, + [V2H].)
+0D (IVulf} + ) + C IV P37
Applying (2.2) to (3.48)
(I2lly + V25 72) + V2P

dP
vV—

2
= || A ells + 1V ul] (357)

1

<celval], +
IVl IVl + IV H 2. + 9P )

Step3: Establish the energy inequality of Gronwall-type. Consider D? x (3.53) + D x (3.56) + (3.57), by
poincaré’s inequality, there exist a function

Q(P,u,H) = ||P - 13||§ + lulls + |H|5 + || P - PtHiz + luell7z + [ Hell 72

such that for any positive constant C7, we have

dQ

9 o (19 + val) <o (559

Integrating the above inequality over [0,t] get (1.9). By Gronwall’s inequality, yields
Q(P,u,H) < C2Q(Po — Py, uo, Ho)e™ ", (3.59)
which together with (1.10), yield (1.8).

Step4: Finally, we prove the estimate of c(t). By symmetry and some tedious but straightforward
calculation, we can concludes the energy estimates on c as following:

d 2 2 2
L ell2 < ully el + 1B,
By Gronwall’s inequality, we get
2 t ¢ 2
lel? < Oy exp {01 / ||u<7>||2d7} <||U0||2 - |Bl||2df) ,
Using (1.8) and (1.9),we have

lelly < Crexp {Cu [|(Py = Po, o, Ho),} (Ilwolly + | (P = P, o, Ho)|[3)

This proved the (1.17). In combination with the above, we have finished the proof of Theorem 1.1.
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