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Abstract The main features of resonance in scattering are described and resonances are determined 
on the basis of the theory of collisions in a two-body system, as well as resonances emerging as 
a result of collisions in a few-body system. Regularities in the emergence of such resonances and 
their characteristics are analyzed. The results of calculations of these resonant processes occurring 
during collisions of electrons with diatomic molecules, made on the basis of the quantum theory of 
scattering in a few-body system, based on Faddeev-Yakubovsky equations are discussed.
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1 Introduction

Resonances offering a variety and peculiarities of physical patterns of phenomena exist in any branch
of physics from molecular physics to elementary particle physics. The concept of resonance is one of
fundamental concepts in quantum physics. We can attach a broad physical meaning to the term resonance,
including stable levels and implying their effect on scattering processes [1, 2].

Resonances play a special role in the physics of irreversible processes. In this case, in accordance with
the Poincare theorem [3], resonances are responsible for nonintegrability of most dynamic systems. A
theoretical explanation of resonances and their parameters can be constructed on the basis of forces of
interaction between particles that are treated as elementary particles in such processes. For example,
resonant processes in atomic physics are determined by the forces of interaction between electrons and
nuclei, while resonances in nuclear physics are determined by forces acting between nucleons. A resonance
in scattering is any peak on the experimental curve describing the scattering cross section. The resonance
is characterized by the moment, parity, spin, lifetime, etc. Collisions of electrons with molecules often
result in the formation of metastable negative molecular ions, which are also traditionally referred to as
molecular resonances [4-11]. In this case, since atoms move slowly as compared to electrons, the electron
+ molecule system can be regarded as a quasi-molecule whose electron shell at each instant corresponds
to a quasistationary state of such a quasimole-cule. This is in accordance with the well-known adia-batic
approximation in quantum mechanics. In this approximation, various electron transitions (excitation,
ionization, charge transfer) are hampered for collisions of electrons, atoms, or ions with molecules under
ordinary conditions. The necessary condition for such a charge transfer [5, 6] is ∆E∆τ ∼ h̄, where ∆E is
the change in the quasimolecule energy and ∆τ is the collision time. Thus, for slow collisions, when the
value of ∆τ is large, transitions can occur only if ∆E is small; i.e., two states ofthe quasimolecule before
and after the collision must be close and such a process can also be treated as a resonant process. Such a
treatment of a resonance reveals the relation between equilibrium and dynamics on the one hand and the
physics of dissipative processes on the other hand [12].

The importance of resonant processes is determined by the fact that all practical applications of
experimental studies are based on resonances since it is resonant processes that are characterized by
large cross sections or long lifetimes as compared to nonresonant processes and play an important role in
low-temperature plasmas (resonant processes determine the emergence and disappearance of excited and
charged particles, i.e., determine optical and electrical properties of a plasma), in controlled thermonuclear
synthesis, mu-catalysis, and so on [4-12].

For example, in laser physics, molecular reactions, which produce the excited molecules, can be
effectively used in chemical lasers if they have a number of the following salient features [13-15]:
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1. the thermal effect and rate constants in these reactions have to be high enough and
2. a considerable part of the energy released must transver to the energy of reaction products.
It is not surprising, then that the practical demands for extending the spectral range and increasing

the power of chemical lasers have simulated and active search for such chemical reactions which can
be described accurately and completely on a basis of experimental investigations. Therefore, at present
theoretical methods of investigation of elementary processes are attracting considerable attention [5-11,13-
15]

Proceeding from the theory of collisions in a two-body system in which the target molecule is regarded
as a force center, the following type of resonances can be distinguished [4-11].

1. A form resonance appears in the case when the impinging electron is trapped to a quasi-stationary
level separated from the level in the continuum by a centrifugal barrier formed by a combination of
attractive and repulsive fields of the target molecule. This type of resonance appears only when the
electron possesses an angular momentum relative to the target molecule. In the case of low-energy s
scattering (l = 0), electron cannot be trapped and form resonance is absent.

2. A vibrationally excited resonance appears when the impinging electron excites vibrations of the
target molecule and is temporally bound. In this case, the kinetic energy of the electron is directly
transformed into the vibrational energy of motion of the nuclei of the negative molecular ion; thus, this
type of resonance is associated with violation of the Born-Oppenheimer principle. The lifetimes of such
resonant states are extremely long (especially for polyatomic molecules) and attain tens of microseconds.

3. An electron-excited resonance is formed when the projectile electron excites the electron system of
the target molecule and also becomes temporally bound. In this case, the detachment of an electron is
impossible as long as the molecule remains in the excited state. Nevertheless, an electron still may be
detached if closed and open channels are coupled.

Theoretical description of such resonances appearing as a result of formation of negative metastable
ions is presented in [4-11] on the basis of the theory of scattering in a two-body system. In these works,
resonances are defined as complex poles of the scattering matrix 1 continued to the non-physical energy
sheet or as poles of an analytic continuation of the Green function. Collisions between electrons and
molecules occurring without the formation of intermediate complexes as well as collision processes at
thermal energies of impinging electrons, in which a nonmonotonic energy dependence of scattering cross
section is also observed, remain unstudied. In the latter case, the application of standard techniques for
calculating cross sections is unjustified in view of violation of the Born-Oppenheimer approximation [4-6].
The application of the theory of collisions in a two-body system for calculating such processes encounters
considerable difficulties since the system considered here is essentially a many-particle system [13, 14].

For this reason, we will describe resonant processes occurring during collisions of an electron with
molecules by using a more consistent approach based on the quantum theory of scattering in a few-particle
system [13, 14]. The main approximation in this case is that the interaction of the projectile electron
with the electrons and nuclei of the target molecule is replaced by the interaction of the electrons with
the atoms of the molecule, the atoms being treated as force centers. Thus, a complex many-particle
system consisting of the electron and the nuclei is replaced by a system of few interacting bodies, which
can be described with the help of Faddeev equations [13]. Naturally, this approximation imposes certain
constraints on the energy of the projectile electron: this energy should not be higher than that the
ionization energy of the atoms constituting the molecule. However, it is precisely this energy range that is
interesting in connection with the presence of resonance peaks in the effective cross sections of collisions
of electrons with various molecules [4-11].

In such a formalism, a resonance in a three-particle system is determined by two-particle resonances
under certain conditions [1, 13, 14]. Thus, the reason for the emergence of three-particle resonances is the
existence of resonant states in paired subsystems. This not very popular point of view is due to the fact
that such a coupling does not exist always and cannot be determined explicitly even when it is present.
This was demonstrated for the first time in nuclear physics and in elementary particle physics where
the interaction between particles leading to the existence of resonances is determined by the exchange
between the particles of the same resonances; thus, resonances produce themselves [1, 2].

In atomic physics, coupling between resonances is observed for a large number of phenomena (such
as scattering of electrons by molecules, coupling between clusters in biopolymer molecules, and in Bose
condensate) [4-7, 14, 15]. In this type of coupling, two-particle resonances lead to a series of three-particle
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resonance. A peculiar feature of this phenomenon is that the stronger the two-particle resonance, the
larger the number of three-particle resonances produced by it. Experiments show [1, 14, 15] that such
resonant states in many-particle systems lead to anomalously high rates of chemical reactions, dynamic
coupling of noninteracting particles, etc. [14-16]. The importance of studying such states is directly
associated with determining the binding energy of a system of N bodies using information on subsystems
of this many-particle system, i.e., the construction of dependences EN = f(EN−1, EN−2, ...) and the
determination of the conditions for the formation of a coupled many-particle system provided that some
subsystems are not coupled [16].

The physical foundation of the effect considered here is presented in [1], where the following aspects
are revealed.

1. The effect of two-particle resonances on the spectrum of a three-particle system is clearly manifested;
i.e., a two-particle resonance can radically reconstruct the discrete spectrum of three particles. However,
not every two-particle resonant state can reconstruct the spectrum of three particles, but only the state
whose size rres ∼ (2mij |e0|)1/2 is much larger than the range r0 of its action (e0 is the binding energy and
mij is the reduced mass of a pair of particles. Such a resonance can only be an s resonance (l = 0) since
such resonant states strongly differ in size from other types of resonant states. For e0 → 0, size rres →∞
. The size of a resonant state is manifested in the scattering of particles in the form of a large scattering
length a, which is equal to the size of this resonant state for small e0. Analyzing resonant states from the
standpoint of their size, we can observe that all these states sharply differ from the resonance considered
above. For example, the state occupied by the system in a partial wave with l 6= 0 has a size on the order
of the range of forces due to the centrifugal barrier; a compound resonance is not large either. Thus, a
two-particle s level with a small binding energy occupies an exceptional position among resonant states
as regards its size.

2. Three-particle levels are stable and their number is proportional to ln(a/r). It can be proved [1,
13-15] that the interaction responsible for the emergence of these levels has the form U ∼ A/R2, where
R2 = 2/3(r2

1 + r2
2 + r2

3), ri is the distance between a pair of particle, and is operative in the interval
(r0, a) (Fig. 1). In the general case, the constant A of this interaction is a function of quantum numbers
of the three-particle state, angular momentum, parity, and symmetry relative to the transposition of
the particles. The value of A is estimated in [1,14, 15]. The strongest attraction should be observed for
the orbital angular momentum L = 0 for three particles since centrifugal forces are absent in this case.
The symmetry of this state must be maximal; otherwise, the wave function has nodes and the coupling
becomes weaker.

3. Centrifugal forces suppress the effect.
4. Such states possess the maximal symmetry.
5. Triple and many particles forces do not influence the effect.
6. The addition of a particle to the three-particle system suppresses the effect.
7. The particle charge has no influence on the effect which is manifested less clearly in this case.
8. For particles with spins, the effect is also pronounced less clearly.
It should be noted that such peculiar states of three particles are independent of the specific form of

the potential (i.e., independent of the forces of interaction between particles) and are universal in the sense
that these states reflect only the fact of existence of a resonance. Thus, irrespective of the form of pair
forces between the particles, if it leads to a low-energy two-particle s resonance, this automatically leads
to the formation of a family of three-particle resonances. Consequently, the reason for the emergence of
three-particle level lies in the production of long-range interaction between three particles by a two-particle
resonance with a large spatial size. Thus, the number of resonant states in a three-particle system is
determined only by specific properties of paired subsystems. The masses of the particles have the strongest
influence on the effect. The following three characteristic regimes can be singled out: the mode of identical
particles, the mode of a heavy center, and the molecular mode [1, 13-15]. The heavy-center mode takes
place when the masses of two particles are of the same order ml, while the mass mh of the third particle
is much larger. The pair of light particle has no energy level and these particles do not interact with each
other, but interact with the heavy particle through the attracting potential. In this case, if the mass of
the third particle is infinitely large, we are dealing with the case of a pair of particles in a force center;
naturally, three-particle levels do not emerge in such a system. In this case, the heavy particle does not
respond to the motion of the noninteracting particles moving independently from each other in the field

Theoretical Physics, Vol. 3, No. 4, December 2018 93

Copyright © 2018 Isaac Scientific Publishing TP



of the stationary heavy particle. Consequently, in this limit, the binding energy of the three particles
is the additive sum of the binding energies of two-particle systems. However, for a finite mass of the
heavy particle, the motion of all the three particles is correlated, so that the center of mass of the system
remains at rest. In this case, the heavy particle responds to a change in the position of other particles
whose motion becomes correlated in spite of the absence of a direct interaction between them. Thus,
dynamic correlation in the motion of coupled particles can be treated as a sort of attraction. It should
be noted that such a dynamic attraction also appears in the case when repulsive force act between the
particles coupled in this way. In this case, dynamic attraction compensates mutual repulsion and leads
to stabilization of the system. This can be clearly seen, for example, for the ion of positronium e+e−e−

[14-16]. In this case, for any finite mass of a heavy center, the number of levels is

N ∼ ml

mh
ln 1
e0mlr2

0

A special feature of this mode is that extremely shallow levels in paired subsystem are required for the
existence of three-particle levels in contrast to the molecular mode, where the requirements imposed on
paired levels are much less stringent and more realistic.

In the molecular mode, when a light particle has shallow levels in the interaction with the heavy
particles, the number of levels is

N ∼
√
ml

mh
ln 1
|e0|mlr2

0

and the potential of the interaction produced by the light particle has the form

V ∼ −0.32
mlr2

hh

,

which is precisely the energy of the molecular energy level. The simple example of this mode is a
system consisting of an electron and two neutral atoms. The molecule formed in this way differs from a
conventional molecule in that its nuclei vibrate in region R whose size is determined by the energy e0
of the shallow paired level; in addition to vibrational levels, this system also has a rotational spectrum.
Thus, two-particle levels in this mode lead to the formation of a series of not only vibrational, but also
rotational levels [1, 13-15]. It should be noted that such peculiar resonance states are manifested in a
wide range of conditions and form a stable phenomenon which can be reliably identified and confirmed
experimentally.

2 Basic Equations and Main Approximation

We will analyze these peculiar resonant states quantitatively in the case of the molecular mode using
the Faddeev integral equations [13]. In the given approximation (three particles, viz., two atoms and
an electron), these equations are formulated for three parts into which the total wave function of the
three-body system splits,

Ψ =
3∑
i=1

Ψi,

Each part corresponds to possible divisions of the system of three particles into noninterecting subgroups.
In the momentum space, in the case of scattering of particle 1 from the coupled pair (2,3) the equations
have the form [13,14]

Ψi = Φiδi1 −G0(Z)Ti(Ψj + Ψk), i, j, k = 1, 2, 3; 3, 1, 2; 2, 1, 3; (1)

Here, Φ1 describes the initial state of the three body systems: free motion particle 1 and the bound state
of pair (2,3); G0(Z) = (H0−Z)−1, Z = E + i0, where H0 is the operator of free motion of three particles;
E is the total energy of three-body system, which is equal to the sum of kinetic energy of projectile 1 and
the binding energy of pair (2,3); Ti is a paired T-matrix that can be unambigously defined in terms of
the paired interaction potential Vi with the help of the Lippmann-Schwinger equations

Ti = Vi + ViGiTi, Gi = (hi − Zi)−1, hi = ∆i + Vi (2)
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To describe the motion of three particles in center-of-mass system we use the generally accepted Jacobi
coordinates. It should be borne in mind that we must use as integration variables in Eq. (1) a certain
system of variables which is found to be most convenient. For example, in the integral corresponding
to the expression G0T1Ψ2, it is more convenient to take k2 and p2 as integration variables. In this case,
variables k1 and p1 determining the kernel of operator T1 should be expressed in terms of variables k2
and p2. Sometimes, it is more convenient to use variables p1 and p2 in the same situation.

Paired T matrices ti(ki, k′i;Z) appearing in the kernels of the equations have singularities in variable
Z: the poles corresponding to the discrete spectrum of paired subsystems and a cut along the positive
part of the real axis generated by the spectrum of the two-body problem. The explicit form of these
singularities gives the spectral representation of matrix T . The poles of the T matrix corresponding to the
discrete spectrum generate singularities in the wave function components Ψi; separating these components,
we obtain the representation

Ψi(ki,pi; poi ) = ϕ(ki)δ(pi − poi )−Bi(ki,pi; poi ;Z)/(p2
i /2ni + k2

i /2mjk − Z), (3)

where

Bi(ki,pi; poi ;Z) = −
3∑
j=1

[Qj(ki,pi; poi ;Z)− ϕj(pj)Rji(kj ; poi ;Z)/(p2
j/2nj − κj − Z)],

and Qj , Rji are smooth function of their variables. Such a division of singularities appears automatically
in the numerical solution of integral equations. To define functions Qj and Rij unambiguously, we can
proceed as follows. We substitute Ψi in form (3) into initial equations (1) and equate the coefficients
of identical singularities. This gives the equations for these functions which can be used for expressing
explicitly all main characteristics of the three-body problem: wave function, elements of the S matrix, as
well as the amplitudes and cross sections of all processes occurring in the three-body system. Thus, the
cross section of the elastic scattering process has the form

dσ11/dΘ = (2π)4n1|R11|2,

the cross section of rearrangement processes is given by

dσ1i/dΘ = (2π)4nipf |R1i|2/p0
1

and the cross section of the process of decay into three free particles has the form

dσ1→3/dΘdp = (2π)4nipf |B0i|2/p0
1,

where
p2
f = 2ni(p02

i /2ni − κ2
1 − κ2

i )

.
The main advantage of the Faddeev equations (1) is that
(i) the solution of this equation gives simultaneously the amplitudes and cross sections of all processes

occurring in the three-particle system;
(ii) the accuracy in determining the bound state from the solution of the Faddeev equations is much

higher than the accuracy obtained by solving the Schrodinger equations (this peculiarity is associated
with the fact that Eqs. (1) were formulated for the wave function components and, hence, take into
account possible asymptotic forms of the three-particle system);

(iii) these equations make it possible to carry out a correct (from the standpoint of mathematics)
analysis of scattering processes, in which all three free particles are in the initial state [12, 13]; this is
impossible in all approaches proposed earlier [5-11]:
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1 + 2 + 3→



1 + (2, 3) -elastic scattering processes
1 + (2, 3)∗ -excitation processes
3 + (1, 2)∗ -rearrangment processes
2 + (1, 3)∗ -with excitation
1 + 2 + 3 -ionization processes

In this case, we have the following representation for the wave function [13-15]:

Ψ0(k,p; k0,p0) = δ(k − k0)δ(p− p0)−
∑
i,jMij(k,p; k0,p0; k

02

2m + p02

2n + i0)
p2

2n + k2

2m −
k02

2m + p02

2n + i0
,

where functions Mi, j satisfy the following system of equations:

Mij(Z) = δi,jTi(Z) + Ti(Z)G0(Z)
∑
k 6=i

Mkj(Z)

For cross sections of these processes, we obtain the following expression [13,15]

S00(k,p; k′,p′) = δ(k − k′)δ(p− p′)− 2πiδ( p
2

2n + k2

2m −
p
′2

2n −
k
′2

2m )

∑
i,j

Mij(k,p; k′,p′; k
′2

2m + p
′2

2n + i0);

corresponds to processes in which three free particles are in the initial and final states,

S0si
(k,p; ,p′i) = 2πiδ( p

2

2n + k2

2m + κ2
si
− p

′2
i

2ni
)
∑
k

Qsi

ki(k,p; p′i;−κ2
si

+ p
′2
i

2ni
− i0)+

∑
sk

ψsk
(kk)Rsksi

ki (p; p′i;−κ2
si

+ p
′2
i

2ni
+ i0),

Ssi0(pi; k′,p′) = 2πiδ(−κ2
si

+ p
′2
i

2ni
− p

′2

2n −
k
′2

2m )
∑
j

Q̃si
ji(pi; k′,p′; k

′2

2m + p
′2

2n + i0)+

∑
sj

ψsj (k′j)R
sisj

ij (pi; p′i;
k
′2

2m + p
′2

2n + i0),

correspond to processes in which a coupled pair of particles sj is present in the initial or the final state. The
equations for functions Qj , Qj , and Rij are analogous to the equations for Mij and are given in [13-15].
It should be noted that potentials do not appear explicitly in integral equations (1); these equations
contain a more general characteristic, viz., T matrices, which are connected with the potentials of the
Lippmann-Schwinger equations (2). Consequently, although potentials are formally used in the given
method, we essentially model T matrices, which are constructed on the basis of the Bateman method [13,
14] suitable for any local potential. This method considerably simplifies numerical solution of the system
of integral equations (1) and sometimes even leads an analytic solution [13-17].

Integral equations (1) possess good properties (from the mathematical point of view) such as the
Fredholm property and unambiguous solvability only under certain conditions imposed on two-particle
data [13]:

(i) paired potentials Vi(k,k′), which are nonlocal in the general case, are smooth functions of k,k′
and satisfy the condition

| Vi(k,k
′
) |≤ (1− | k − k

′
|)1−ε, ε > 0;
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(ii) point Z = 0 is not a singular point for Eqs. (2); i.e., all three scattering lengths in pair channels
are finite;

(iii) the positive two-particle spectrum is continu- ous. This condition is essential for nonlocal potentials
since positive eigenvalues may appear only in this case, and this condition is satisfied virtually for all
physical processes.

Coulomb potentials and hard-core potentials do not satisfy the first condition:
Coulomb potentials lead to a singularity of the type |k−k′|−2 in T matrices, while hard-core potentials

result in a slow decrease in the T matrix for large momenta. When the second condition is violated, the
Fredholm property of Eqs. (1) is lost for Z = 0, which leads to the above-mentioned effect of emergence of
an infinitely large discrete spectrum in a three-body system under certain conditions. A similar situation
emerges in the case of scattering of electrons from diatomic molecules, for which the Efimov levels
were experimentally observed for the first time. The approximation considered here reproduces these
experimental results in a quite natural way.

It should be emphasized once again that the given approximation appears quite reasonable for values
of the impinging electron energy lower than the electron excitation energy of the molecule.

As the initial data in such a formulation of the problem, we use pair interaction potentials, masses, and
energies of colliding particles. For potentials of pair interaction of electrons with atoms of the molecule,
we used potentials of the form

V (r) = λ exp(−βr)/r, (4)
whose parameters were determined on the basis of the electron binding energy at a negative ion, scattering
lengths, and effective radius. Allowance for spin (in the case of homonuclear molecules) was made as
follows. For the scattering length, we used the quantity [5, 6, 14-17]

1
a

= 1
a1

= 1
a2

= 1
4( 3
at

+ 1
as

),

where at and as are the triplet and singlet scattering lengths, respectively. Pair potentials of interaction
between atoms in molecules were simulated by the Morse potentials

V (r) = D(1− exp(−α(r − r0))), (5)

whose parameters were determined on the basis of spectroscopic data [18].
Numerical solution of integral equations (1) involves considerable difficulties because the kernels of

integral equations (1) contain the same singularities [13-15] but here, we propose a quite universal method
for solving system of equations (1) for calculating bound states as well as scattering states in systems
with arbitrary masses, which interact via arbitrary pair short-lived potentials that can also be defined
numerically. In the method proposed here, the domain of an unknown function is divided into a number
of intervals on each of which the function is approximated with the help of corresponding interpolation
polynomials. The method for solving system of equations (1) is a modification of the standard method
for solving integral equations, in which the integral on the right-hand side is replaced with the help of a
quadratures formula for solving Eq. (1). As a result, we arrive at a system of algebraic equations for values
of the sought function at the nodes of the quadratures formula. In the proposed method, the domaine of
the sought function is divided into a number of segments, on each of which the function is determined
with the help of interpolation polynomials reproducing the correct behavior of the function in the vicinity
of the above singularities, after which integration is carried out using quadratures formulas. A package
of applied programs were used for realization of the proposed numerical method for solving system of
integral equations (1)[13,15].

Computational difficulties encountered in calculation of cross sections in the given approximation are
mainly associated with the long-range Coulomb interaction potentials. It was mentioned above that in
this case the integral Faddeev equations cannot be applied directly; either these equations should be
modified, or the differential formulation of the Faddeev equations in the coordinate state should be used
[13-15]. In case for three charged particles Faddeev equation in the coordinate space, which have the form
[13-15]

(−∆xi
−∆yi

+ Vi(xi)− E)Ψi = −Vi
∑
j 6=i

Ψj , (6)
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where
Vi = ni/xi + Vst(xi), ni = qkqj√

2mkj

,

xi =
√

2mjmk

mj +mk
(rj − rk), yi =

√
2mi(mj +mk)
mi +mj +mk

ri −
mjrj +mkrk
mj +mk

,

and the coordinates are connected via the relations

xi = cijxj + sijyj , yi = −sijxj + cijyj ,

s2
ij =

mk

∑
kmk

(mi +mj)(mj +mk) , s2
ij + c2

ij = 1

Vst being pair short-range interaction potentials defines by (4) and (5).
The relation between the momentum and coordinate representations is defined by the Fourier trans-

formation,

Ψ(ki,pi) = (2π)−3
∫

exp−i(kixi + piyi)Ψ(xi,yi)dxidyi

To obtain a unique solution of integrodifferential equations in the coordinate space, we must add the
boundary conditions, which have the form [13-15]

Ψi(xi,yi)xi,yi→0 → 0, (7)

Ψi(xi,yi)ρ=
√
x2+y2→∞ → φi(xi) exp(ikiyi − iw0

i )+

∑
j

Aij(ŷj , k̂i)φi(xj)
exp(i

√
Ej |yj |+ iwij)
|yj |

+A0i(X̂, k̂i)
exp(i

√
E|X|+ iw0)
|X|5/2 , (8)

where

w0
i = ni

2|ki|
ln[|k̂i||x̂i| − (ki,xi)], wij =

∑
k 6=j

nk

2|sjk
√
Ek

ln 2
√
Ek|yk|,

w0 = − |X|
2
√
E

∑
i

ni
|xi|

ln 2
√
E|X|, ni = kqiqj√

2mij

, Ek = E − κj ,

A large number of various numerical methods have been developed on the basis of approximation
of components Ψ by bicubic Hermite splines, quintet basis splines, etc. However, an effective, reliable,
and universal algorithm of numerical solution of Eqs. (6) with boundary conditions (7) and (8) in the
coordinate space has not been developed for the following reasons.

First, an algorithm of numerical solution for processes with three free particles in the initial and final
states does not exist in view of rather complex boundary conditions.

Second, point-by-point convergence of the obtained result to the exact solution upon a decrease in the
mesh size cannot be proved analytically in any of the known numerical methods based on finite different
approximation.

Consequently, the application of the mesh method in the polar coordinate system [14] for solving
numerically the system of coupled integrodifferential equations (6) in partial derivatives with boundary
conditions (7) and (8) appears as most justified since analytic solutions also exist in this case for some
potentials determining the resonant states under investigation [13,14,22]. This makes it possible to monitor
the accuracy of the solutions obtained by the numerical method.

Let us consider the geometrical (topological, spatial) characteristics of the above-mentioned peculiar
resonant states. Since it is quite difficult to study these characteristics experimentally in the case of
electron collisions with molecules, we will consider the systems that are accessible for experimental studies,
viz., clusters of molecules of inert gases [28].
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It should be noted that these molecular clusters consisting of atoms of helium, lithium, and a number
of inert gases attract attention of both theoreticians [29] and experimentalists [28] primarily due to
applied studies such as superfluidity, superconductivity, Bose condensation, chemistry and physics of
clusters, laser physics (i.e., the possibility of developing He+

2 molecular laser), as well as the possibility of
observing such a peculiar quantum effect in real systems.

However, a direct theoretical analysis of even the simplest of the above systems, viz., He3 consisting
of three helium nuclei and six electrons, is an extremely complicated problem.

To analyze the He3 system, we consider the cluster approximation in which this system is replaced
by a simpler system consisting of three force centers (helium atoms). The validity of this approximation
for calculations of bound states is obvious since the difference between the binding energy of the system
and the ionization energy of the atom is several orders of magnitude. It is well known that helium atoms
are bosons; consequently, the problem boils down to analysis of three pairwise identical neutral spinless
particles. To solve this problem, we propose mathematically correct model-free methods in the theory of
scattering in the three-body system [13-15].

It should be emphasized that virtual levels in paired subsystems in the case of complex many-particle
systems do not lead to the emergence of resonant states in a many-particle system [1]. This, however,
does not mean that this effect is absent in these systems since it can be due to many-particle and not
two-particle virtual states.

For this reason, we will consider the interpretation of a number of peculiar properties of systems He3,
Ar3, Kr3, Ne3, Xe3, Li3, and Rn3 precisely on the basis of the three-particle approximation. It should be
noted that a large number of theoretical and experimental methods exist for studying clusters consisting
of atoms of helium and a number of inert gases. Most methods are intended for studying bound states;
however, scattering states [28-31], which are most informative for confirming the existence of peculiar
resonant states, were practically ignored.

It was stated by a number of authors [30] that the main difficulties in studying the He3 system are
associated with its low binding energy ( 1 mK), an unusually large size of the excited state (∼ 150Ao),
and a strong repulsion at small distances. However, the results obtained in [15, 31], where an analogous
three-particle approximation was used for calculating the He3 system, differ from the statements made in
[30].

For this reason, it would be also interesting to verify the conclusions drawn in [30] on the basis of the
three-particle approximation with the short-range pair potentials used in [32]. The main purposes of this
investigation are

(i) determining the number of possible resonant states;
(ii) clarifying the role of pair interaction potentials in the characteristics of these states;
(iii) estimating the effect of repulsion at short distances, which can be approximated by a hard core in

the model for the boundary conditions [13-15] imposed on the characteristics of these peculiar states.
Thus, the theoretical analysis of the He3 system is reduced to solving equations in the quantum theory

of scattering in a three-body system, which makes it possible to use the well-known methods [13-15]. In
contrast to [30], where resonances in a three-particle system were studied using the Faddeev equations on
the basis of analytic continuation of the scattering matrix to the range of complex energy values, we are
using here direct numerical solution without an analytic continuation.

In this case, after the separation of angular variables, the Faddeev equations (6) in the coordinate
space for the He3 system in the three-particle approximation with pair short-range potentials [32] have
the form [13-15]

[Hλ,l − z]ΨaL(x, y) = −V (x)(ΨaL(x, y) +
∑
a′

∫ +1

−1
Ψa′L(x′, y′)hLaa′(x′, y′, η)dη), (9)

where

Hλ,l = − ∂2

∂x2 −
∂2

∂y2 + l(l + 1)
x2 + λ(λ+ 1)

y2

z = E + i0, L = l + λ, a = (l, λ),
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For calculations with a hard core in the model of boundary conditions, the right-hand side is equal to
zero for x < c, where c is the core size. To obtain an unambiguous solution to the equations, we must
preset boundary conditions (7), (8),

ΨaL(x, y) |x=0= 0, ΨaL(x, y) |x=0= 0, (10)

which assume the following form in the boundary-condition model:

ΨaL(c, y) +
∑
a′

∫ +1

−1
Ψa′L(x′, y′)hLaa′(x′, y′), ηdη = 0

x′ =
√
x2/4 + 3y2/4−

√
3xyη/2, y′ =

√
3x2/4 + y2/4 +

√
3xyη/2,

For ρ→∞ the boundary conditions in the case of short-range pair potentials can be written in the
form [13]

ΨaL ∼ρ→∞ aaL,v
∑
v

ψl,v(x)Hv(
√
E − E2,l,v) +AaL(θ)expi

√
Eρ+ iπL/2
√
ρ

(11)

where ψl,v(x) are the partial components of the wave functions of paired subsystems with binding energy
εl,v; ρ =

√
x2 + y2; θ = arctan y/x; aaL,v and AaL(θ) are the scattering amplitudes of processes with two

or three particles, respectively, in the final state; and Hv(x) are the Hankel spherical functions.
In calculations of bound states, the wave functions decrease quite rapidly at infinity; consequently, at

a large distance x = Rx, y = Ry, the asymptotic boundary conditions can be replaced by the conditions

∂xΨaL |x=Rx

ΨaL |x=Rx

= i
√
εv

∂yΨaL |y=Ry

ΨaL |y=Ry

= i
√
εv − E

For the He3 system in the three-particle approximation with angular momentum L = 0, we have

Hλ,l = H0,l = − ∂2

∂x2 −
∂2

∂y2 + l(l + 1)(1/x2 + 1/y2),

where partial components l assume even values. l = 0, 2, 4, ...; and the expression for functions hLaa′(x, y, η)
is given in [13-15].

The asymptotic behavior of the components of Eqs. (9) for scattering processes with short-range
potentials can be described by the function [13-15]

Ψl(x, y; z) = δl0ψd(x)[sin (
√
z − εdy) + exp (i

√
z − εdy)[a0(z) + o(y−1/2)]]

+exp (i
√
zρ)

√
ρ

[Al(z, θ) + o(ρ−1/2)], (12)

where a0(z), z = E+ i0 is the elastic scattering amplitude for E > εd, and Al(E, θ) is the decay amplitude
for E > 0.

We also assume that the helium molecule He2 has only one bound state with binding energy εd < 0
and with the corresponding wave function ψd(x).

For processes of scattering, the scattering matrix for z = E + i0, E > εd, the scattering phases and
lengths in the s state can be expressed with help of the following formulas

S0(z) = 1 + 2ia0(z),

δ0(p) = 1
2Im lnS0(εd + p2 + i0), p > 0,

Lsl = −
√

3/2 lim
p→0

a0(p)/p
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To solve the system of equations (9) with boundary conditions (10), (12) numerically, we used the
standard method described in detail in [13-15, 17]. For pair interaction potentials, we used potentials
HFDHE2, HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with appropriate parameters [32], which
reproduce in detail the main parameters of the corresponding molecules [18].

The results of calculation of the energy of bound states in systems He3 and He∗3 with and without
taking into account the hard core are given in Tables 1-4.

The results of calculation of the scattering states in systems He3 and He∗3 with and without taking
into account the hard core are given in d Fig.4 (dependence of fase shifts on energy).

For interpreting the geometrical characteristic of the He3 molecule in both graund and exiting ststes
was given in [31].Using the method devtloped in these paper, let us consider the geometric characteristics of
Ne3 and Ne∗3 molecules which are considerable interest in context of investigations into Bose condensation,
supercondactivity and superfluidity. The results of calculation of the density function difined as [31]

%(r1) =
∫
|F (r1, r2, r3)|2dr2dr3,

where

F (r1, r2, r3) = Ψ(x, y, z′) + xy[Ψ(x+, y+, z′+)
x+y+ + Ψ(x−, y−, z′−)

x−y−
]/2πxy,

z′ = (x,y)/xy,

x+− = (x2/4 + 3y2/4−+
√

3xyz′/2)1/2, y+− = (3x2/4 + y2/4−+
√

3xyz′/2)1/2,

are presented in Fig.2,3. This function has the form

%(r) =
√

3
4π2r2

∫
|F (x, r

√
3, z′)|2dxdz′

A sufficiently clear representation of the geometrical characteristics of theinert gases is provided be
plotting thes function in coordinates ri, ra, where rl = rz′ ra = z′

|z′|r(1− z
′2)1/2.

Note that here, for excited state of the inert gas molecules as well for the molecules He∗3, [31] and Ne∗3
(Fig.2,3), this function has two peaks, which corresponds to a linear structure of the He∗3 system. This
corresponds to the situation when the third particle in the excited state is located with a high probability
between two other particles (as if this state corresponded to two combined paired subsystems). It is
precisely this configuration that corresponds to the conditions for the emergence of the Efimov effect in a
three-particle system, when the scattering length in one of the paired subsystems is quite large. This
conclusion is confirmed by calculations of the clusterization coefficient defined by the formula [31]

fc =
∫
Ψ(x, y, z′)φ2(x)dz′dx

The results of such calculations are given in Table 1. It can be seen that two-particle states dominate
in the excited state Ne∗3 , while their role in the ground state is insignificant. In the ground state, system
He3 forms a nearly equilateral triangle, while in the excited state, one of the atoms is at a large distance
from the other two atoms. Other excited states can be obtained by the similitude method [1, 13, 15].

An analogous structure is formed in the calculation of the ground states of the systems Ne3, Ar3,
Kr3, Xe3, and Re3 using the three-particle approximation. The results of calculation of these systems in
the given approximation with the HFD-B potential and the parameters borrowed from [32] are presented
in Tables 5-6.

In calculations based on the boundary-condition model, the value of core c was chosen so that even a
slight change in this quantity did not affect the binding energy of paired subsystems. In our calculations,
c = 1.5Ao, the value of binding energy for the helium molecule was 1.69 mK, and the value of r0 was 100
Ao. A detailed description of the numerical method for solving system of equations (9) with asymptotic
boundary conditions (11), and (12) is given in [13-15].

Theoretical Physics, Vol. 3, No. 4, December 2018 101

Copyright © 2018 Isaac Scientific Publishing TP



It should be noted that, according to our calculations, the size of the ground state of the He3 system is
smaller than the size of the He2 molecule. However, the size of the excited state He∗3 of the three particle
system is much larger than that of the two-particle system He2. The experimental data [28] confirm this
statement. Thus, in the given approximation, the results of calculations indicate that peculiar resonant
states can exist in the He3 system, the number of such states being not more than two.

To study the scattering processes occurring during the collision of an atom with a helium molecule
and to determine the role of pair interaction potentials, we calculated the amplitudes of elastic scattering
and decay as well as phase shifts with and without taking into account the hard core.

The results are almost independent of the form of pair interaction potentials and on whether or not the
hard core was taken into account both for bound states and for scattering state. Thus, it can be concluded
that the form of pair interaction potentials and allowance for a hard core in the boundary-condition
model in the given approximation does not substantially affect the results of calculations.
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Figure 1. Effective potential responsible for resonances in a three-body system.
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Figure 2. The density functions for Ne∗
3 molecule in ground states.
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Figure 3. The density functions for Ne∗
3 molecule in exited states.
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Figure 4. Dependence of fase shifts on energy for the collisions between helium atom and molecule for potentials
HF D −B, LM2M2, T T Y P [32] calculated (a) without and (b) with taking into account the hard core.

Table 1. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius
for He3

Potential EHe3 , mK ‖fc‖2 Lsl, Å < rHe3 >, Å < r3
He2 >1/2, Å

HFDHE2 -0.1171 0.2094 140 5.65 6.46
HFD-B -0.1330 0.2717 137 5.48 6.23
HFD-ID -0.1061 0.1555 139 5.80 6.64
LM2M1 -0.1247 0.2412 132 5.57 6.35
LM2M2 -0.1264 0.2479 131 5.55 6.32
TTYPT -0.1264 0.2487 130 5.56 6.33
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Table 2. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius
for He3 in boundary-condition model

Potential EHe3 , mK ‖fc‖2 Lsl, Å < rHe3 >,Å < r3
He2 >1/2,Å

HFDHE2 -0.1170 0.2095 138 5.65 6.46
HFD-B -0.1329 0.2717 135 5.48 6.23
HFD-ID -0.10612 0.1555 134 5.80 6.64
LM2M1 -0.12465 0.2412 130 5.57 6.35
LM2M2 -0.12641 0.2479 131 5.55 6.32
TTYPT -0.12640 0.2487 131 5.56 6.33

Table 3. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius
for He∗

3

Potential EHe∗3
, mK ‖f∗

c ‖2 Lsl, Å < rHe∗3
>,Å < r3

He∗3
>1/2,Å

HFDHE2 -1.6653 0.9077 134 55.26 66.25
HFD-B -2.743 0.9432 135 48.33 57.89
HFD-ID -1.0612 0.8537 140 62.75 75.38
LM2M1 -2.1550 0.9283 129 51.53 61.74
LM2M2 -2.2713 0.9319 131 50.79 60.85
TTYPT -2.2806 0.9323 131 50.76 60.81

Table 4. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius
for He∗

3 in boundary condition model

Potential EHe∗3
, mK ‖f∗

c ‖2 Lsl, Å < rHe∗3
>,Å < r3

He∗3
>1/2,Å

HFDHE2 -1.6765 0.9078 135 56.22 67.11
HFD-B -2.7458 0.9439 135 48.31 58.00
HFD-ID -1.1061 0.8597 136 62.87 76.13
LM2M1 -2.2585 0.9323 132 52.41 62.04
LM2M2 -2.2801 0.9319 131 50.79 61.05
TTYPT -2.2885 0.9339 131 51.23 60.89

Table 5. Binding energies of inert gas molecules calculated by using HFD-B potential, a.u. 10−6

Energy Ne2 Ar2 Kr2 Xe2 Rn2

Ethr 178 394 619 854 9268
Eexp 135 446 629 874 -
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Table 6. Binding energies of the ground state and the first excited state of the inert gas molecules calculated by
using HFD-B potential

Ne3 Ne∗
3 Ar3 Ar∗

3 Kr3 Kr∗
3 Xe3 Xe∗

3 Rn3 Rn∗
3

398 330 1278 1215 1885 1811 2509 2438 30875 30801
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