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Abstract It is argued that string theory predicts unified field theory rather than general relativity
coupled to matter fields. In unified field theory all the objects are geometrical, for strings the
Kalb-Ramond matter field is identical to the nonsymmetric part of the metric except that the
fields contribute to different sides of the field equations. The dilaton is related to the object of
non-metricity.
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1 Introduction.

By a unified field theory is meant a field theory, as opposed to an extended object theory, in which all the
fields are geometrical and occur on the geometric or ‘left hand side’ of gravitational field equations. If unity
is achieved in principle in some form of extended object theory, why is unity in some form of field theory
of interest? There are two main reasons: firstly it is aesthetically more pleasing if a unified description is
still apparent in intermediate descriptions of reality, secondly unified field theories as opposed to geometry
plus matter theories give different predictions.

Previous unified field theories have involved torsion Sabc ≡ {a[bc]}, as this usually is related to fermions
or spin it is assumed to vanish here. Another geometrical object used is non-metricity −Qcab = gab;c, see
[18,19] and references therein, typically the object of non-metricity is taken to simplify Qabc = Qagbc and
Qa associated with the vector potential Aa of electromagnetism: the reason such theories break down
is that Q has conformal properties which are not shared with Aa. Yet another approach is to assume
that the metric is nonsymmetric and make some identification such as g[ab] = Fab, see [3,4,5,6,7,9,16,22],
where Fab is the faraday tensor of electromagnetism: the reason such theories typically break down is
that g[ab] acts like a potential tensor rather than a faraday tensor, see in particular the conclusion of
[16], in more modern language g[ab] corresponds to the potential of the Kalb-Ramond [12]field (classically
the same as 2-form electrodynamics). Nonsymmetric metrics have been studied recently by [8,10,13,14].
Theories which involve both a nonsymmetric metric and a scalar dilaton field include [20]. There are at
least four problems with nonsymmetric metrics: firstly the large number of combinations eq.(2)[11] of ways
of constructing a unified metric, hopefully the number of possibilities will be reduced by string theory,
secondly the Weyl [24] - Pauli [17] objection to Einstein’s attempts which states that because gab is a
reducible representation of diffeomorphisms, there is no real meaning in saying that a theory is expressed
‘soley in terms of gab’, thirdly the Damour - Deser - McCarthy [2] problem of the implications of the gauge
invariance of the Kalb-Ramond field for the metric, this can be overcome by adding a mass term, and
fourthly the linearization instability of Clayton [1], perhaps this does not occur when the dilaton field is
also present.

The present work requires both a non-vanishing object of non-metricity and an nonsymmetric metric.
This is unlike previous nonsymmetric theories where the vanishing of non-metricity is one of the primary
assumptions. Here, except in the last section §4, only linear gravitation is considered: what the full
theory could be is left open. There may be many non-linear theories which give the linearized weak field
equations used here. Even in the simplest cases the relationship between a linear gravitational theory the
corresponding non-linear theory is not immediate [15]. Only states of linearized theories can be compared
to those of closed strings, so that string theory cannot make a direct prediction of which non-linear theory
to choose.

In section §2 the states of the quantum closed string are derived, the treatment here comes from [25].
In section §3 is a discussion of whether weak unified field theory can be described by the simplest weak
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field equations involving only the d’Alembertian acting on the nonsymmetric linear perturbation hab and
the object of non-metricity Q, when this is the case the theory has the same one particle states as those
of the closed string. Section §4 shows how previous nonsymmetric unified field theories do not include
non-metricity and how Papapetrou’s solution [16] illustrates how unified field theories and geometry plus
matter theories make different predictions. Section §5 is the conclusion.

2 The Quantum Closed string.

The quantum closed string, Ch.13 [25], is described by∑
I,J

RIJa
I†
1 a

j†
1 |p+,

→
p T>, (1)

where RIJ is an arbitrary square matrix of size (D− 2) and D is the dimension of the spacetime. The sum
involving I and J is over spatial indices because in the light cone gauge components with advanced and
retarded null indices can be gauged away. Roughly speaking an open string has states of the form a†|p >
and linear combinations of these give the general state; however for the closed string, apart from an
overall momentum, there are two sets of momenta corresponding to travelling around the string in either
direction, so that the general state has a two index matrix R which is transvected with two sets of creation
operators corresponding to the two types of momenta. The arbitrary matrix R can be decomposed into
its symmetric S, nonsymmetric A and trace (also called spur) Sp parts. Applying such a decomposition
to (1) one has states governed by three terms which are identical to the states of vacuum or stress free
linearized gravity, the Kalb-Ramond field and the dilaton respectively.

3 Weak Field Unified theory.

Assume that there is given an nonsymmetric metric

gab = g(ab) + g[ab], g(ab) = 1
2(gab + gba), g[ab] = 1

2(gab − gba). (2)

Furthermore assume that the determinant of the metric is non-zero. In odd dimensions the determinant
of the nonsymmetric part vanishes. The inverse of the metric obeys

gabg
cb = δca, gabg

bc = δca + 2gabg[bc]. (3)

Define the ’Christoffel’ connection

{abc} ≡
1
2g

ad{gbd,c + gcd,b − g(bc),a}, (4)

without the symmetrization on the last metric term there is non-vanishing torsion. Define the contorsion

Ka
.bc ≡ gad

(
−2S{bcd} +Q{bcd}

)
, (5)

where the Schouten [21] bracket is defined by

{bcd} ≡ bdc+ cdb− bcd. (6)

The full connection is the sum of the Christoffel connection and the contorsion

Γ abc ≡ {abc}+Ka
bc. (7)

The definitions of the contorsion (5) and the full connection (7) sometimes differ by constant factors in
various texts. The torsion and non-metricity are given by

Sabc ≡ {a[bc]} = 1
2k1g

adg[cb],a,

−Qcab ≡ gab;c = gab,c − Γ eacgeb − Γ ebcgae
= g[ab],c + k2

(
g[bc],a + g[ac],b

)
− 2k3K(ab)c, (8)
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the torsion is defined in terms of the Christoffel connection rather than the full connection so as to avoid it
being defined in terms of itself, when (4) is defined with symmetrization of the last metric term the torsion
vanishes, i.e. k1 = 0; also k2 = 1 when the is no symmetrization in the last term of (4) and k2 = 1/2 when
there is symmetrization. k3 = 0 if the connection used in the definition of Q is the Christoffel connection
and k3 = 1 if the connection used is the full connection. The Christoffel-Riemann tensor is

{}
Ra.bcd= {adb},c − {acb},d + {acf}{

f
db} − {

a
df}{

f
cb}. (9)

The symmetries of this tensor are Rab(cd) = Ra[bcd] = 0 in the torsion free case; the Bianchi identity is
complicated but as neither requiring parts of it to vanish separately, or coupling it to matter are used
here it can be ignored. For any connection which is a sum of the Christoffel connection and a tensor
connection Ka

.bc, the Riemann tensor is

Ra.bcd =
{}
Ra.bcd +

K

Ra.bcd,
K

Ra.bcd= 2Ka
.[d|b|;c] + 2Ka

.ebS
e
dc + 2Ka

.[c|e|K
e.b
.d] . (10)

Subject to the weak field approximation

gab = ηab + hab, hab = h(ab) + h[ab], (11)

where hab is the linear perturbation. and assuming that partial differentiation can be interchanged
i.e.X,bc = X,cb the linearized Christoffel-Riemann tensor takes the form

2
{}
Ra.bcd= h a

d.,bc − h
,a

(bd) .c − h
a
c.,bd + h ,a

(bc) .d. (12)

There are two different ways to contract to give the Ricci tensor

2
{}
Rab= h c

(ac).b + h c
(bc).a −�h(ab) − h,ab + k4h

c
[bc].a + k5h

c
[ca].b − k6�h[ab], (13)

Contracting (12) over a = c gives k4 = 1, k5 = k6 = 0, contracting over b = d gives k4 = 0, k5 = k6 = 1,
for the first of these the contribution of h[ab] vanishes in the nonsymmetric harmonic gauge (15), so the
second choice is taken. Applying the standard harmonic gauge

h ,b
(ab) = 1

2h,a, (14)

to the first and second terms and the nonsymmetric harmonic gauge

h ,b
[ab] = 0, (15)

to the sixth term and again assuming that partial differentiation can be interchanged

2
{}
Rbd= −�hbd, (16)

the same result as for general relativity except that the nonsymmetric part of the linear perturbation
contributes. For the semi-metric

Qabc = Qagbc, (17)

the contorsion part of the Riemann tensor is

K

Ra.bcd= Qb;cδ
a
d −Qb;dδac , (18)

Contracting to form the full linearized Ricci tensor gives

2
Γ

Rab= 2
{}
Rab +

K

Rab,
K

Rab= k7Qa;b + k8Qb;a + k9gabQ
e
.;e, (19)
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where cross terms g[ab]Qc are taken to vanish. The values of k7, k8 and k9 depend on which indices
are contracted over and the way in which contorsion and semi-metricity are defined. For example, for
the contorsion (5) and the semi-metricity (17), contracting over a = c gives k7 = 1−D, , k8 = k9 = 0,
contracting over b = d gives k7 = 1, k9 = −1. The important point is that there are linear terms
in non-metricity which contribute to the linearized Ricci tensor. For nonmetric theories applying the
definition of the covariant derivative to the equation

(�−M)gab = 0 (20)

gives [18]

M(x)+
{}
∇a Qa. + (ε+D/2− 2)QaQa. = 0, (21)

where ε depends on the type of � operator assumed. Linearizing, so that terms O(Q2) are discarded,
and assuming M = 0 and that Qa is a gradient vector, gives �Q = 0. To summarize this section, the
simplest linearized gravitational field equations involving both an nonsymmetric metric and the object of
non-metricity are

�hab = 0, �Q = 0, (22)
the first equation coming from the vacuum linearized Ricci equations (13) and the second term coming
from the non-metric equation (21). For these equations to be a correct linearization of a non-linear theory
two things must happen. The first is that terms of the form (19)

K

Rab must not contribute to linearized

Christoffel Ricci tensor, this could be achieved if the field equations
{}
Rab= 0 are chosen in preference to

Γ

Rab= 0, or if the terms
K

Rab vanish by themselves. The second is that (20) is not usually derivable from a
given lagrangian, but assuming (20) is the easiest way to get to �Q = 0. Whether there are non-linear
theories with these properties is hard to tell, as no theories with both nonsymmetric metric and object
of non-metricity have been studied. The quantization of the object of non-metricity Q is the same as
for a scalar field [25]Ch.10.4. The symmetric part of (13) fourier transformed to momentum space using
the substitution ∇ → (i/~)p gives [25]eq.10.89, so that the quantization of the symmetric part of the
metric is the same as for [25]Ch.10.6. The equation �h[ab] = 0 is the same as the Euler equation for the
Kalb-Ramond field in the Coulomb gauge. To see this, start with the Kalb-Ramond lagrangian

L = −1
6HabcH

abc, Habc ≡ Bbc;a +Bca;b +Bab;c, Bab = −Bba, (23)

varying with respect to B gives the Euler equation

Habc
;a = �Bbc +Bca;b

a +Bab;ca = 0 (24)

The Coulomb gauge
Bab;b = 0 (25)

is the same as the nonsymmetric harmonic gauge (15), applying the Coulomb gauge (25) to the Euler
equation (24) gives

�Bbc = 0, (26)
which is the same as the nonsymmetric part of the metric in (22), and is quantized in the same way as
[25]prob.14.6.f.

4 Comparison with other unified field theories.

The question arises as to whether string theory predicts Einstein’s unified theory. Nonsymmetric theories
usually assume vanishing torsion and non-metricity, for example, equations (1) and (2) of Einstein and
Strauss [4] are just these requirements. This implies that string theory can only predict Einstein’s unified
theory if the dilaton is not present, in which case the theory is not a fully unified field theory. The field
equation of Einstein’s unified theory are

R(ab) = 0, R[ab];c = 0. (27)
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These field equations are different from the Kalb-Ramond field coupled to general relativity as then there
is no stress on the right hand side of the first of these field equations and the second is not explicitly
an equation of 2-form electrodynamics. Considering just the pattern of the closed string states these
equally well predict general relativity plus Kalb-Ramond field plus dilaton or Einstein’s unified theory
plus dilaton. Einstein’s intension was to unify gravitation with electromagnetism and when restricted to a
brane there are relations between the Kalb-Ramond field and electromagnetism p.319 [25] so that from
that perspective Einstein’s objective was achieved; however from a modern perspective without such a
geometric setup Einstein’s unified field theory just unifies gravitation with the Kalb-Ramond field.

Papapetrou [16] first solution is

ds2 = −
(

1 + q4

r4

)[
1− 2m

r
− λ

3 r
2
]
dt2 + q2

r2 dtdr −
q2

r2 drdt

+
[
1− 2m

r
− λ

3 r
2
]−1

dr2 + r2dΣ2
2 ,

dΣ2
2 = dθ2 + sin(θ)2dφ2. (28)

This is not what would be expected for a solution of p-form electrodynamics coupled to the field equations
of general relativity, apart from the nonsymmetric terms gtr = −grt one might anticipate

− gtt = 1
grr

=
[
1− 2m

r
− λ

3 r
2 +

(q
r

)2p
]
, (29)

however machine calculation shows that there is no simple p-form which gives this. A simple 2-form
solution for the Einstein-Hilbert Lagrangain coupled to the Kalb-Ramond Lagrangian (23) is

ds2 = −dt2 + drr

1 + q2

r2

+ r2dΣ2
2 , β ≡ arcsinh

(q
r

)
, Habc = ε d

abc β,d, (30)

which has the five properties: i)it is the same as the SenGupta-Sur [23] solution but with the sign changed
in grr and arcsinh replaced by arcsin, ii)gtt = −1 rather than being radially independent in other words
a function of r, iii)Htθφ = q sin(θ) with similar expressions for permutation of the indices thus in that
sense Habc is radially independent although HabcH

abc is, iv)the non-vanishing Ricci tensor is in just one
component Rrr rather than the (−,+,+,−)q2/r4 diagonal pattern of electromagnetism, v)there does not
seem to be any straightforward way of incorporating either a mass m or cosmological constant λ.

5 Conclusion.

A difference between the nonsymmetric part of the metric g[ab] and the Kalb-Ramond field Bab is that the
nonsymmetric part of the metric occurs on the geometrical side of the field equation and the Kalb-Ramond
field occurs on the matter side. This result should be robust to most specific unified field theories, however
as illustrated by Papapetrou’s first solution this difference is enough for the predictions of the theories
to be different: in particular nonsymmetric metric theory seems to have r−4 decay as opposed to r−2

decay of the Kalb-Ramond solution (30). In practise it is hard to envisage how either could be tested
by experiment or observed, it is not even clear whether it would be best to look on short length scales
or astrophysical ones, there is as yet no observation or experimentation which needs either theory for
explantation let alone distinguishes between the two. There is a possibility of a non-spherically symmetric
test such as through scattering amplitudes but again there seems to be no way of testing this. Currently
what it seems to come down to is coherence of the theory and in this case non-symmetric metric theory
has the edge because it is aesthetically more pleasing for a model of nature to have terms on the geometric
side of the field equation rather than like Kalb-Ramond theory on the matter side. The relation between
the object of non-metricity and the dilaton is more theory specific, in particular it requires that the
contorsion part of the Ricci tensor does not contribute to the linearized field equations otherwise �hab
couples to it. So why try to replace the dilaton with the object of non-metricity? There are two reasons:
the first is that if a complete unified field theory is sought then something must correspond to the dilaton,
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the choice of torsion is much worse than non-metricity as torsion is usually related to spin, the second is
that because of the conformal properties of the object of non-metricity there will probably be different
cosmological predictions [19]. Another problem is that in the standard picture the various objects all have
spin, so what is the spin of a unified nonsymmetric hab, the answer is that it can be decomposed into
h(ab) and h[ab] and these have spins as before. In the model here the nonsymmetric metric and object of
non-metricity are related (8) and this could occur in general.
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