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Abstract We compute the Feynman propagator associated with closed timelike curves in the
neighborhood of the ring singularity in the Kerr metric. The propagator is well defined outside
r = 0, where it ceases to exist.
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1 Introduction

The Penrose-Carter diagram [1] of the Kruskal-Szekeres [2,3] maximal analytic extension of the Kerr
solution [4] to Einstein’s equations, exhibits a quadruple-infinity of asymptotically flat regions: . . . , U−1,
U0, U1, . . . (anyone can be our “initial" universe), . . . , Ū−1, Ū0, Ū1 . . . (mirror images of the U ′

ks), and
. . . , U ′

−1, U ′
0, U ′

1, . . . and their mirror images . . . , Ū ′
−1, Ū ′

0, Ū ′
1 . . . To the last two families correspond a

negative value of the r coordinate which, as can be easily seen through the Newman-Janis algorithm [5],
is analytically continued from a polar coordinate r > 0 to a Cartesian one with range (−∞,+∞). It is
interesting that any future directed timelike trajectory can start at any spacetime point in, say, Uk, and
end at any point in, say, U ′

l [6], after passing through many black hole (BH) and white hole (WH) regions,
and through an open disk whose boundary is one of the infinite copies of the ring singularity [7]. The
important point is that U ′

l ̸= Uk for all l, k, with U ′
l and Uk both Minkowskian respectively at r = −∞

and r = +∞. (The sets Uk’s and U ′
k’s together with their mirror images are respectively denoted by I

and III in Fig. 3 of Ref. [1], while the BH and WH regions are denoted by II.)
If one requires that the physical solution (possibly the final stage of the gravitational collapse of a

spinning star) be globally hyperbolic, which is the strongest sufficient condition for the absence of closed
causal curves and therefore for causality protection [8], the only surviving region is any of the central
“diamond" shaped portions of the diagram, given by the union Uk ∪ Ūk ∪ BHk ∪WHk, with upper and
lower boundaries the Cauchy horizons of a Cauchy surface S through the center of the diamond, future
and past event horizons and null infinities. (The analogue diamond for the Reissner-Nördstrom case can
be seen in Fig. 13 of Ref. [8].) In BHk and WHk, the vectors ∂r and ∂t are respectively timelike and
spacelike, and the constant r lines decrease from r+ to r− in BHk and increase from r− to r+ in WHk.
The asymptotically flat region U ′

k ∪ Ū ′
k which extends from r− to r = −∞ and includes the left and

right timelike singularities at r = 0, remains outside the physical solution. This does not occur in the
Schwarzschild case, since from the outset the solution is globally hyperbolic.

Nevertheless, in Section 2, we shall consider the maximal analytic extension of the Kerr solution
mentioned at the beginning, which is not globally hyperbolic, and compute the Feynman propagators
associated with the causality violating closed timelike curves which exist in the neighborhood of the
singularity rings. The propagators exist and are well defined in these regions but, as expected, cease to
exist at the singularities due to the infinite oscillations of imaginary exponential functions. Section 3 is
devoted to conclusions.

2 Metric, Lagrangian, and Propagator

In Boyer-Lindquist [9] coordinates xµ = (x0, x1, x2, x3) = (t, r, θ, ψ), at t = t0 = const., θ = π/2
(equator), r negative but close to the singularity ring at r = 0, for the cases a2 < M2 and a = M
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(extreme Kerr), the Kerr metric is approximately given by (we use the metric signature (+,−,−,−))

ds2 = gψψdψ
2 = 2Ma2

|r|
dψ2. (1)

So, the infinitesimal spacetime interval is timelike and, since ψ ∈ [0, 2π], one has a closed timelike curve
as ψ goes from 0 to 2π. M is the mass of the black hole and a is the angular momentum/unit mass and
also the radius of the singularity ring. With ψ = ψ(λ), λ ∈ [0, Λ] is a parameter with units of lenght, Λ
being a lenght scale.

The interval (1) allows to define a dimensionless Lagrangian density

L(ψ, ψ̇;λ) = ( ds
dλ

)2 = 1
2
µψ̇2 (2)

("free particle" Lagrangian) where µ = 4Ma2

|r| and ψ̇ = uψ = dψ
dλ . The Lagrange equation d

dλ (∂L
∂ψ̇

) = ∂L
∂ψ

leads to µψ̈ = 0 with solution
ψ̄(λ) = Aλ+B. (3)

With ψ̄(0) = B = 0 and ψ̄(Λ) = AΛ = 2π one has the solution

ψ̄(λ) = 2π
Λ
λ, (4)

with a classical action
S̄ = 1

Λ

∫ Λ

0
dλL(ψ̄, ˙̄ψ;λ) (5)

given by 8π2Ma2/|r|Λ2.
It is immediate to ask oneself which quantum object, if any, could be associated to the above closed

timelike path. A natural (and almost unique) is the Feynman propagator KΛ(2π,Λ; 0, 0) given by the
path integral∫ ψ(Λ)=2π

ψ(0)=0
Dψei/Λ

∫ Λ

0
dλL(ψ,ψ̇;λ) =

∫ ψ(1)=2π

ψ(0)=0
Dψei

∫ 1

0
dσL(ψ,ψ′;σ) = KΛ(2π, 1; 0, 0), (6)

where σ is the dimensionless parameter λ
Λ ∈ [0, 1] and ψ′ = dψ

dσ . The path integral is that corresponding
to a “particle" of mass m = µ

Λ2 moving along a ring of unit radius. The result is well known and is given
by [10]

KΛ(2π, 1; 0, 0) = a

Λ

√
2M
π|r|

l=+∞∑
l=−∞

exp(i(8M
|r|

(πa/Λ)2(1 − l)2 − π/4)), (7)

which has units of (lenght)0 and is well defined in the range 0 < |r| ≪ a ≤ M . KΛ involves the Jacobi
theta function [11]

Θ3(z, t) =
l=+∞∑
l=−∞

ei(πtl
2+2lz), (8)

with t = 8πMa2

|r|Λ2 and z = −πt. l is the winding number and corresponds to a classical path contributing
to the path integral giving l additional turns to the ring as the particle completes a circle. The l = 0
contribution corresponds to the free particle case.

With a and M at our disposal, for M > a there are two natural choices for the lenght scale Λ:

Λ1 = a2

M
< a and Λ2 = M2

a
> M. (9)

These choices give the propagators

KΛ1(2π, 1; 0, 0) = M

a

√
2M
π|r|

l=+∞∑
l=−∞

exp(i(8M
|r|

(πM/a)2(1 − l)2 − π/4)), (10)
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and

KΛ2(2π, 1; 0, 0) = ( a
M

)2

√
2M
π|r|

l=+∞∑
l=−∞

exp(i(8M
|r|

π2(a/M)4(1 − l)2 − π/4)). (11)

For the extreme Kerr case, Λ1 = Λ2 = M = a, the propagator is

KΛ=M=a(2π, 1; 0, 0) = M

√
2M
π|r|

l=+∞∑
l=−∞

exp(i(8π2M

|r|
(1 − l)2 − π/4)). (12)

In all cases, it is clear that KΛ does not exist in the r → 0− limit (the singularity), because of the infinite
oscillations of the exponentials in (7).

3 Conclusion

We conclude that, though at the present time the assignation of a quantum character to the Feynman
propagator associated to a closed timelike curve and in general to an arbitrary timelike or null geodesic
[12] can only be considered a formal assignation, it nevertheless suggests that even a complete quantum
treatment of the Kerr black hole would not eliminate the presence of such “time machines", which,
however, remain hidden behind the event and Cauchy horizons of any starting universe Uk and, moreover,
outside any globally hyperbolic portion of the solution. Finally, we want to emphasize that locally, any
displacement along a closed timelike (or null) curve is always forward in “time"; the time machine effect
only emerges globally, due to the warping of the spacetime.
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