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Abstract. In this paper we set to accomplish two things: determine the equation of motion for an 
uncharged test probe falling radially into a charged, non-rotating black hole and determine the 
relationship between coordinate acceleration and coordinate speed. The paper is concerned only what 
happens outside the event horizon, since we are using only the external Reissner-Nordstrom equations 
in the derivations. What happens inside the event horizon (the presence of a wormhole connecting 
the black hole to a white hole) is outside the scope of this paper. 
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1   Introduction 

We will present a method based on the Lagrangian for the derivation of the equation of motion of an 
uncharged test probe falling radially into a charged, non-rotating black hole. In a prior paper [1] we 
have derived the solution for the case of non-rotating, non-charged black holes. In the following, we are 
extending the derivation to the case of charged black holes. While we could have started from the 
geodesic equation, the derivation based on the Euler-Lagrange equations is more intuitive and less prone 
to error. The Reissner-Nordstrom metric for the particular case of absence of rotation ( θ ϕ= = 0d d ) is 
[2,6-8]:  
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 where G is the universal attraction constant, 

Q is the black hole charge, r is the radial coordinate, c is the speed of light in vacuum and ε0  is the 
vacuum electric permittivity. From the metric we obtain, as shown in [1,2]: 

a) the Lagrangian

α
α

= −
2 2

2 2

1dt drL
ds ds

(1.2) 

The Lagrangian (2) is obtained following an idea by Rindler [3], whereby one replaces the parameter 
t  with the arc length s  along the solution curve, provided that that curve isn’t null. This allows 

replacement of the Lagrangian 
• •

= jij iL g x x  with its square 
• •

= jij iL g x x  where the overdot represents 
now derivative with respect to the arc length s . Rindler proves that the Euler-Lagrange equations for 

• •

= jij iL g x x are equivalent to those for 
• •

= jij iL g x x [3]. 
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b) from the Lagrangian we obtain the Euler-Lagrange system of equations [1,2]: 
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and, respectively: 
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 The over-dots signify derivative with respect to s . From the metric (1.1) we obtain: 
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Substituting (1.5) into (1.4) we obtain 
c) the equation of motion: 

 α
+ =

2

2

1 0
2

d r d
drds

  (1.6) 

From (1.1) we obtain: 
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In (1.7) k can be determined by setting the condition that the coordinate (or proper) speed is zero 
when the particle is dropped from radial distance 0r  towards the mass M: 
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Therefore proper speed is: 
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Finally, the equation of motion is: 
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Equation (1.10) is the equation of motion expressed in terms of the proper acceleration 
2

2

d r
ds

. A quick 

comparison with the results [1,2,5] for non-charged, non-rotating black holes shows that the right hand 
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side of the equation of motion changes from −
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intuitive if we consider that in both cases, the equation of motion [1,2,5], expressed in terms of α  is 
given by (1.6). It is interesting to note that the charge of the black hole contributes an acceleration that 
is inversely proportional to the cube of the radial distance and it is of opposite sense to the standard 
gravitational acceleration. This contribution exists even though the test probe is uncharged. 

2   Discussion 

Although charged black holes with rQ ≪ rS are similar to the Schwarzschild black hole, it is known that 
they have two horizons: the event horizon and an internal Cauchy horizon. As with the Schwarzschild 
metric, the event horizons for the spacetime are located where the metric component α  diverges; that 
is, where: 
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The above equation has two solutions, each corresponding to one horizon: 
 = ± −2 20.5( 4 )s s Qr r r r   (2.2) 

Black holes with 2rQ > rS are believed not to exist in nature because they would contain a naked 
singularity, in our paper we will consider only the physically realistic case ≤ <2 Q sr r r  which 
corresponds to: 
 α< <0 1   (2.3) 

In other words, our paper deals only with the realistic case of radial fall outside the external event 
horizon of a physically realizable charged hole, one that would not contain a naked singularity.  

3   The Dependency between Coordinate Acceleration and Coordinate 
Speed in Reissner-Nordstrom Coordinates 

In this section we determine the relationship between coordinate acceleration and coordinate speed. 
Using (1.1) and (1.3) the coordinate speed is: 
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From (2.1) we get the coordinate acceleration: 
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Eliminating k  between (3.1) and (3.2) we obtain: 
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So, the relationship between coordinate acceleration and coordinate speed in the case of radial motion 
into a charged, non-rotating black hole is: 
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A quick sanity check shows that for zero charge ( = 0Qr ) we recover the equation for the 
Schwarzschild case developed in [1]. An alternative expression for the coordinate acceleration as a 
function of the radial coordinate can be obtained from (3.1) and (3.3): 
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As per (2.3): 
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Another useful formula can be derived from (3.1): 
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Formula (3.7) proves essential in determining the radial separation for two test probes falling into a 
black hole [5]. Elementary algebra shows that under conditions (3.6) the expression: 
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is always positive, so the equation (3.7) has physically realizable solutions.  

4   Conclusion 

We have provided a derivation of the relationship between coordinate acceleration and coordinate speed 
for an uncharged test probe falling into a charged, non-rotating black hole. We have also shown that the 
charge of the black hole contributes an acceleration that is inversely proportional to the cube of the 
radial distance and it is counter the sense to the standard gravitational acceleration. This contribution 
exists even though the test probe is uncharged. We have used the same formalism in order to derive the 
equation of motion of the test probe. 
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