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Abstract. It was little over a hundred years ago that Einstein introduced the ‘cosmological constant’ 
in his General Theory of Relativity in order to obtain a static universe, to conform to the 
philosophical view of the universe at that time. What Einstein subsequently dubbed as the ‘biggest 
blunder’ of his life (after Hubble’s discovery of the expanding universe) has come back in vogue in 
cosmology. Here we look at the evolution of the concept of the cosmological constant from its 
inception to it possibly making up close to about 70% of the energy density of the universe. 
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1   Introduction 

On February 4 1917, Einstein wrote to Ehrenfest (quoted in The Invented Universe [1]), “I have ... 
again perpetrated something about gravitation theory which somewhat exposes me to the danger of 
being confined in a madhouse.” He revealed these maddening thoughts four days later to the Royal 
Prussian Academy of Science, and these were published a week later by the Academy [2]. Thus began 
modern relativistic cosmology. 

2   Why and What Did Einstein Introduce? 

While formulating the principle of equivalence, i.e. an accelerated frame is locally equivalent to a 
uniform gravitational field (this explains why all bodies sufficiently close to each other, fall with the 
same acceleration in the earth’s field), Einstein realized that gravity can be described entirely by the 
geometry of space-time [3-5]. Unlike the flat Minkowskian space-time of Special Relativity (SR) (frames 
moving with uniform relative velocity in which laws of physics are invariant in all inertial frames), 
accelerated frames (or equivalently gravity) is described by curved space-time General Relativity (GR). 
The curvature is caused by the distribution of matter, or more precisely energy includes mass energy [6]. 

‘Space-time tells matter how to move; matter tells space-time how to curve’ [7], i.e. particles follow 
the geodesics or shortest paths of the curved space-time caused by a distribution of matter (like a point 
mass or a field). So in General Relativity, gravity is not a force due to matter like in Newtonian theory, 
but ‘gravitational’ motion is a consequence of particles following a curved path in space-time with 
curvature, due to equivalent energy. In the absence of matter there is no gravity and we have flat space-
time. The field equation for gravity in the Newtonian theory is given by Poisson’s equation [5] 

2 = 4 Gρφ π∆   (1) 
where G is Newton’s gravitational constant, φ  is the scalar gravitational potential and ρ  the matter 
density which is the source for the scalar gravitational potential. 

In Einstein’s GR, the potentials are given by the metric tensor, which is a purely geometric quantity, 
describing how distances between points in the curved space are evaluated. For instance, in Euclidean 
space in Cartesian coordinates, we represent the infinitesim φ  al distance, ds, between two points as 
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2 2 2 21 1 1 .ds = dx dy dz+ + The coefficients in front of 2dx , 2dy , 2dz  are called components of the metric 
tensor, i.e. 11 22 33g 1,g 1,g 1,g 0ij= = = =  for i j≠ . In spherical coordinates we have, 

2 2 2 2 2 2 21 sinds = dr r d r dθ θ φ+ +  and 2 2 2
11 22 33g 1,g ,g sinr r θ= = = .  

Similarly the infinitesimal ‘distance’ in flat space-time is 2 2 2 2 2 21 1 1ds = c dt dx dy dz− − −  with a 
corresponding diagonal metric tensor 2g ( , 1, 1, 1)cαβ = − − − . In general the metric tensor (a second order 
tensor) is notated as 
 2 g gds dx dx dx dxα β α β

αβ αβ= =∑∑   (2) 
(repetition of ,α β  denoting summation) 

The motivation behind Einstein’s GR is that a matter distribution distorts space-time around it. Thus 
the flat space-time metric in spherical coordinates 
 2 2 2 2 2 2 2 2 2sinds = c dt dr r d r dθ θ φ− − −   (3) 
is modified by the presence of a point mass M, to the metric (this is the well-known Schwarzschild 
metric) 

 
1

2 2 2 2 2 2 2 2 2
2 2

2 21 1 sinGM GMds = c dt dr r d r d
c c

θ θ φ
−

   
− − − − −   

   
  (4) 

There are other such metrics for different matter sources, which also involve a modification of the flat 
space-time metric. The Poisson’s equation in GR maybe expected to be given by 
 2g 4= Gραβ π∇   (5) 

which is however incorrect, since the gαβ  in 4 dimensional space-time has actually ten components, 
and we would also expect the source term on the RHS to be a second order tensor, instead of just the 
scalar ρ (matter density).  

Indeed we do have a second order tensor, namely the energy momentum tensor Tαβ , which includes 
pressure terms, shear stress, etc. So the relativistic analogous of Poisson’s equation in Newtonian gravity, 
hereafter referred to as Einstein’s filed equations, would be expected to resemble 
 2g 4= GTαβ αβπ∇   (6) 

Thus in General Relativity, all sources of energy (pressure, stress, viscosity, etc.) contribute to gravity, 
not just the mass density ρ . For a perfect fluid, Tαβ  includes just ρ  and three pressure components,

iP .  
Since in GR gravitational effects are related to the curvature of space-time we now discuss the 

geometric analogue of the second derivative of the metric tensor. On a plane (zero curvature or infinite 
radius of curvature), a triangle has the sum of its angles equal to π radians (or 1800) (Euclidean 
geometry). However, a triangle drawn on a sphere (spherical triangle) has the sum of all its angles > π. 
The difference over π is proportional to area of the triangle divided by radius of sphere squared. If a 
vector is transported over a triangular area covering an octet of the sphere, so that at all points it is 
kept parallel to itself (parallel transport), then on returning to the original point after moving along the 
area, it will change direction by an angle of π /2.  

The curvature is then defined as the ratio of direction (angle) change to the area traversed by the 
vector, i.e. 

 
( ) 22

12
1 48

R
aa

π

π
= =   (7) 

The sphere is uniformly curved. For a plane, the radius 0a R→ ∞ ⇒ = . In a plane if we parallel 
transport a vector, its direction remains unchanged, whereas in a curved surface it does not. For a non-
spherical area, dx dxα β , the change in direction of the vector is given by 
 V R dx dx nµ µ α β γ

αβγ∆ =   (8) 
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where nγ  is the unit normal vector, Rµ
αβγ  is called the Riemann tensor, a fourth order curvature tensor 

and is composed of the second derivative of the metric tensor. As the metric tensor (second order tensor) 
is the analogue of potential in Newtonian gravity, to replace 2φ∇ , we need a tensor containing second 
derivative of metric tensor gαβ . Such a tensor is Rµ

αβγ , but the source term is Tαβ , a second order 
tensor, so left hand side also must have second order. This is the Ricci tensor obtained by contracting 
the Riemann curvature tensor using the metric tensor as: g R Rµν

αβµν αβ= . So we may expect the field 
equations to be 
 R Tαβ αβκ=   (9) 
where κ  is a constant.  

For any constant physical quantity, its derivatives must vanish. Conservation of the energy 
momentum tensor in GR is written as ; 0D T Tαβ αβ

β β= =  (Dβ  is called the covariant derivative, as it 
transforms as a tensor, i.e. unlike the usual partial derivative). ; 0T αβ

β = and equation (9) implies that 

; 0Rαβ
β = , but it turns out ; 0Rαβ

β ≠ . Earlier papers of Einstein and Grossman had the erroneous field 

equations in equation (9). However, Einstein then found that ;
;

1 g 0
2

R R Gαβ αβ αβ β
β

 
− = = 

 
. Here R is 

the curvature scalar obtained by contracting the Ricci tensor, R g Rαβ
αβ= . In the case of a sphere, R is 

a constant and can be related to a constant density as 

 
2

8 GR
c
π ρ

=   (10) 

In the case of zero density ( )0 0Rρ = = , i.e. there is no curvature, i.e. flat space-time. Gαβ  is the 
Einstein tensor and is the appropriate tensor to use in the field equations. Thus, G Tαβ αβκ=  are the 

GR field equations. Einstein also showed that if one adds a gαβΛ  term to Gαβ , (where Λ  is a 
constant having dimensions of curvature), one still gets 
 ( )

;
g 0Gαβ αβ β

+ Λ =   (11) 

So the more general field equations are 
 gG Tαβ αβ αβκ+ Λ =   (12) 

This form of the field equations was justified by Hilbert’s variational principle, with the action: 
( ) 42 gR d x+ Λ −∫ , which indeed gives the field equation (equation (12)). Field equations in physics for 

scalar or vector field can be obtained from a variational principle where an action is written involving 
the field and its derivative.  

In classical mechanics for example it is well known that the Lagrangian ( , , )L f x x t= �  being a function 

of position (x), velocity ( x� ) and time (t) gives rise to equations of motion 0L d L
x dt x

 ∂ ∂
− = ∂ ∂ �

. L can be 

functions of fields and their derivatives instead of position and velocity.  
Spurred by the successes of his General Theory of Relativity (thanks to the perihelion precession of 

Mercury's orbit), Einstein wanted to apply his field equations to the whole universe and get a model for 
the same [2]. But he assumed (wrongly) that the universe should be static and unchanging. Of course, 
Einstein had strong philosophical reason to look for a universe which is static. During that time, there 
was hardly any observational evidence for an expanding universe. 

Not surprisingly he found his equations did not admit a static solution (gravity which is described by 
GR gives a large scale attraction pulling everything together (collapsing)) unless he added a new term 

gαβΛ , giving the more general equation (equation (12)). The Λ  term essentially introduces a large 
scale repulsive force 2rΛ  to balance the attractive gravitational force, giving an equilibrium size of a 
static universe as 1a = Λ . This became known as Einstein’s static universe. He estimated its radius 
as a few billion light years and was happy with it.  
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However a few years later, Hubble (using the 100 inch Mt. Wilson telescope near Los Angeles) 
observed that all far away galaxies show a red shift proportional to distance [8], implying a receding 
velocity ∝ d. Hubble's observations definitely suggested an expanding (dynamic) universe with time and 
not a static one. With the weight of evidence increasing for expansion, Einstein realised that he could 
have predicted a dynamic model if he had not introduced the Λ  term. He reportedly remarked later 
that it was his biggest blunder. 

3   Bigger Blunders 

However introduction of Λ  term was not his real blunder. The biggest blunders were in fact: 
1. Not realising that a static universe results only when there is no matter. This was clear even to 

Newton. The kinetic energy associated with a particle of mass m in the expanding universe is given by, 
21 2ma� . If the total mass of the universe is given by 34 3M aπ ρ= , ρ  being the density, then the 

potential energy associated with the mass m is, GMm a . On equating the two we get 

 8
3

a Gρ
a

π
∝
�

  (13) 

This would imply a static universe, i.e., 0a =� , only when 0ρ= . 
2. He thought he got a stable static configuration by balancing the attractive overall gravity with the 

Λ  repulsion, thus getting a balancing radius 1Ea ≈ Λ  so called Einstein static universe. However it 
is an elementary problem in physics to check whether the equilibrium (around a position) is stable or 
unstable, by making small perturbations about the equilibrium coordinate. Einstein did not check for 
this. 

An elementary calculation first pointed out by Eddington[9], and implicitly by Lemaître[10], who 
found the general solutions of which Einstein’s universe was a particular, and clearly unstable, case) 
shows that Einstein universe is unstable to perturbations. The necessary and sufficient condition for a 

static solution is, 0a a= =� �� . The density is given by,
2

0 8
c
G

ρ ρ
π
Λ

= + , where the second term is the dark 

energy contribution. To examine stability, we put 1 2a aδ−= Λ +  and 0 04
ρρ δ

π
Λ

= +  into the usual 

equations 

 04 1
3 3

a
a

πρ
= − + Λ
�

  (14) 

with, 1c G= =  in the above equations. So to order Rδ , equation (14) becomes 

 ( )1 2
0

4
3

a πδ δρΛ = −��   (15) 

As total dust energy is conserved, i.e. 3
0aρ =  constant, we have 

 0

0

3 a
a

δρ δ
ρ

= −   (16) 

Equation (15) then gives 
 ( ) 0a aδ δ− Λ =��   (17) 
So aδ  grows exponentially in time, with the solution of equation (17) given by 
 ta eδ Λ∝   (18) 
So the static Einstein universe is unstable. Surprisingly, Einstein did not realise this.  

3. What is worse is that he insisted that the Newtonian limit of his extended field equations with Λ  
term is given by Modified Poisson equation given by 
 2 4= Gρφ φ π∇ − Λ   (19) 

This was a real blunder, which marked an opening statement in a bizarre comedy of errors. Einstein 
modified Poisson equation would give rise to a potential kr= e rφ −  falling off with r, exponentially, 
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rather than a universal 2rΛ  repulsion. This equation is familiar to all physicists through the static 

version of Yukawa's meson theory which has a spherically symmetric vacuum solution. rconst= e
r

φ − Λ .  

In the context of Newtonian gravity, such a modification was empirically introduced by Seeliger [11] 
and Neumann [12] before 1900, to introduce an exponential cut off in the potential to try to explain 
Mercury's anomalous motion among other things. Einstein was unaware of this work in 1916, but that is 
not the problem. [13] 

It is true that the Poisson equation modified by a term φ−Λ  gives rise to an exponential cut-off for 
gravitational potential. But Einstein's flat assertion that the Λ  term in his modified field equation has 
an analogous effect, i.e. leads to a φ−Λ  modification of Poisson equation is completely wrong. The 
correct Newtonian analogue of Einstein's equation with Λ  term is given by 
 2 2 4c = Gρφ π∇ − Λ   (20) 

This indeed gives as a solution a repulsive force 2rΛ , increasing with r.  
However generations of physicists (even relativity specialists) have repeatedly parroted this mistake of 

the φΛ  term, rather than the correct 2cΛ  term [14-17]. Some eminent recent examples include: 
1. Abraham Pais [18] writes in his magisterial Einstein biography about the analogy between the Λ  

terms in Poisson's equation and Einstein's equations gives exponential cut-off etc. 
2. Even Stephen Hawking makes the same mistake. In 1983 Royal Society discussion [19], he begins 

by saying that Einstein's Λ  term modifies Poisson equation to give an exponentially falling Neumann 
type of potential. 

3. J Weber in 1989 discussion of weak field approximates with Λ  term (gravitational waves) has a 
Λre− propagators. [20] 

The Λ  term introduces a force ( )2 3F = mc rΛ  analogous to a repulsive oscillator potential 2 2c rΛ . 
This is the correct potential, a force increasing with distance rather than an exponentially decreasing 

one. Eddington [21] clearly showed this and was one of the few who did not blunder at least in this case. 
Instead of getting a shielded gravity field, one had now at large distances, almost naked repulsion quite 
different from Einstein's expected bargain. Incidentally above (major) blunders is not listed in Ohanian's 
massive tome 'Einstein's mistakes'[22].  

4   Modern Hindsight 

This large scale Λ  repulsion is the first example of Dark Energy which makes the universe expand 
faster and faster (accelerating universe). Ironically many of the recent observations [23] are consistent 
with a Λ  term, i.e. Einstein's cosmic constant dominating the universe to the extent of 70%.  

In 1917 already de Sitter [24] made nonsense of Einstein's static universe (with a Λ  term) by finding 
an exact exponentially expanding solution for a Universe with only a Λ  term and no matter 
 ( )2 2 2 2 2 2Htds = dt + e dx + dy + dz−   (21) 

This is also evident from the fact that /a a =� constant. /a a = Λ =�  constant gives, 

0/ tda a = dt a a e ΛΛ ⇒ = . This was immediately after Einstein's paper. In fact this de-Sitter solution 
forms the seminal basis for modern inflationary universe paradigms. The introduction of the Λ  term 
amounts to a redefinition of the vacuum state flat space-time by the de-Sitter space-time. The Λ  term 
introduces a negative pressure with an equation of state 2P = ρc− and the negative pressure gives rise 
to repulsion. This can be seen even in Newtonian context. The acceleration is given by 

 

3

2 2 2

2

4 3 3

4 3
3

aGM Pa G
a a c

a PG
a c

π
ρ

π ρ

 
= − = − + 

 
 

⇒ = − + 
 

��

��
  (22) 

The negative sign indicates usual gravitational attraction (deceleration). If the pressure is given by 
2P = ρc−  (as implied by Λ ), then a��  becomes positive (repulsion). Pressure due to a cosmological 

constant term, Λ  is 
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4

8ve
cP
Gπ−

Λ
≈   (23) 

The general expression for pressure is 
 2P w cρ=   (24) 
where, 1w = −  gives cosmological constant Λ . So a negative pressure implies repulsive gravity. This 
negative pressure characterises dark energy. 

5   Dark Energy 

Generally one would expect the rate of expansion of the universe to slow down, as once the universe 
started expanding, the combined gravity of all its constituents should pull it back, i.e. decelerate it. So 
the deceleration parameter was expected to be a positive value. A negative deceleration parameter ( 0q ) 
would imply an accelerating universe, with repulsive gravity and negative pressure. And the 
measurements of Type Ia supernovae have revealed just that [25,26]. By measuring their flux with 
redshift, 0q  is determined to be –0.55. 

Various observations of the dynamics of the universe have implied the dominance of DE. This has led 
to the introduction of a repulsive gravity source to make the deceleration parameter negative [27]. The 
dimensionless quantity, deceleration parameter which measures the cosmic acceleration of the universe’s 
expansion is given by 

 0 2

aaq
a

= −
��
�

  (25) 

Any bulk motion, whether of a vehicle or any moving object like celestial body, including the universe 
as a whole is characterised by position ( )a t  (as a function of time), velocity ( )( )a t�  and acceleration 

( )( )a t�� . The Hubble constant measures rate of expansion ( )( )
( )

a tH a
a t

=
�

. The deceleration parameter is 

given by  

 0 2
mΩq = ΩΛ−   (26) 

where cΩ= ρ ρ  is a dimensionless parameter given by the ratio of the density to the critical density. 
For dark energy matter, cΩ= ρ ρΛ Λ , and for matter, cm mΩ= ρ ρ , where mρ  is matter density. 

When the KE term balances the gravitational PE, matter, 21
2

GMmma
a

=� , the mass 34
3 avM aπρ= , avρ  

is the average density, then the density corresponding to this condition (critical density) is given as 
23

8c
H
G

ρ
π

= .  

The deceleration parameter 0q  is deduced from luminosity-distance relation (how flux from a distant 
object falls off with distance) for far away type Ia supernovae in distant galaxies, which is given by 

 
( )0

0

1
1

2L

qczD = + z
H

 −
 
  

  (27) 

where the flux is equal to 
( )24 L

L
Dπ

, L is the standard candle luminosity (of the supernova). By 

measuring flux and with redshift (z) (which is known from wavelength observed) and 0H  known, 0q
can be inferred. 0q  is seen to be negative (-0.55). This together with the fact that =1m ΛΩ = Ω + Ω  
(from CMBR), gives 0.3mΩ ≈  and 0.7ΩΛ ≈ .  

All postulated forms of matter yield a deceleration parameter 0q ≥  (positive q), except in the case of 
DE. Dark energy dominating the universe at present (accelerating universe) has an equation of state 

48 Theoretical Physics, Vol. 3, No. 2, June 2018

TP Copyright © 2018 Isaac Scientific Publishing



given by equation (24), and the current observations do indeed suggest w  is close to one. Einstein may 
turn in his grave because his ‘biggest blunder’ dominates the universe.  

If in future, Dark Energy is confirmed to be just the cosmological constant, Einstein should get two 
posthumous Nobel Prize, one for gravitational waves prediction and other for the cosmological constant. 
Einstein's Λ  may also explain why the universe started expanding in the first place (whereas gravity 
would have made it collapse instantly). A large cosmic vacuum energy term (predicted in modern 
unified gauge theories) is equivalent to a (very) large Λ  term in the early universe, making the 
universe expand exponentially in the beginning. Negative pressure would create matter so that total 
energy is zero, in effect, creation ex-nihilo (from nothing), i.e., universe as a free lunch! With improved 
sensitivity and advanced detection of gravitational waves, then the accurate angle- and frequency-
dependent response functions of interferometers for gravitational waves arising from various theories of 
gravity, i.e. general relativity and extended theories of gravity will be the definitive test for general 
relativity, and help in discriminating among various gravity theories [28]. 

6   Summary and Conclusion 

But there are a lot of unresolved questions and issues [29, 30]. Such as, how did such a large vacuum 
energy drop? And what is the nature of Λ ? The non-zero value of ΛΩ  has many problems. The value 

of vacuum density, ( )4210vac eVρ −= is unnaturally small. In quantum field theory, vacuum energy arises 
from fluctuations of the fields associated with virtual particles. Ironically covariant (i.e. Lorentz 
invariant) forms of this vacuum (or zero point energy) is of the form, pointed out by Zel’dovich and 
others, ( )vacT gαβαβ

κ= , which has just the form of the energy-momentum tensor of the Λ -term. So 

virtual particles of mass m (created in vacuum), have an energy density ( )( )vacT
µν

 of 4 5 3~ m c � . 

Particles of mass m, separated by mc�  have mass density ( )3m mc�  or energy density 

( )32 4 5 3mc mc m c=� � . As virtual particles of all masses contribute, we have the Planck mass, giving 
a large term (e.g. in the very early universe, during quantum gravity era, when particle masses were of 
this order) 

 
4 5

3
~ Pl

Pl

m c
Λ

�
  (28) 

This is 120 orders larger than the current density of the universe. Phase transitions in the early 
universe would lead to release of this vacuum energy (like latent heat) with a density 4 5 3~ m c � . It is a 
mystery why the present value is so small, what happened to all these huge vacuum energies. Partial 
solutions are given in [17] and references therein. The only other length scale is the Hubble radius and 
coincidentally 2 56 2~ 10Ha cm− −Λ ≈ . 

Even the electroweak or super-symmetry breaking at TeV scale gives ( )41vac TeVρ > , the observed 
value is 5410  times smaller. At present mΩ  (scaling as 3a− ) and ΛΩ  (scaling as 0a ) are of same 
order of magnitude, implying we live in a very special era. Why is the vacuum density (Λ ) density, 
comparable to matter density at present epoch?  

Answers to the old problems raise new problems with no answers. Einstein neither liked Λ , nor the 
then formulation of quantum theory. Ironically, it is now believed that quantum fluctuations (quantum 
vacuum energy) should generate Λ  (as discussed above) and perhaps even Einstein gravity.  
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