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Abstract The propagation of ion-acoustic waves (IAWs) in a collisionless unmagnetized self-
gravitating degenerate quantum plasma system (SG-DQPS) has been studied theoretically for
the first time. A nonlinear Schrödinger equation is derived by using the reductive perturbation
method to study the nonlinear dynamics of the IAWs in the SG-DQPS. It is found that for kc > k
(kc < k) (where kc is critical value of the propagation constant k which determines the stable
and unstable region of IAWs) the IAWs are modulationally unstable (stable), and that kc depends
on the ratio of the electron number density to light ion number density. It is also observed that
the self-gravitating bright envelope solitons are modulationally stable. The results obtained from
our present investigation are useful for understanding the nonlinear propagation of the IAWs in
astrophysical compact objects like white dwarfs and neutron stars.
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1 Introduction

Recently, the self-gravity of degenerate quantum plasma (DQP) is the cornerstone among the plasma
physicists to understand the basic features of the astrophysical compact objects (viz. white dwarf and
neutron stars[1-7]). The self-gravitating DQP system (SG-DQPS) has a large number of ultra-relativistic
or non-relativistic degenerate species (order of 1030cm−3 in white dwarfs and order of 1036cm−3 even
more in neutron stars [3-6]) and extremely low temperature which exhibits unique collective behaviours
from others plasma system. The basic constituents of the SG-DQPS (viz. white dwarf and neutron stars)
are degenerate inertialess electron species [1-4], degenerate inertial light ion species (viz. 1

1H [8,9], 4
2He

[1,2], and 12
6C [4,6]), and heavy ion species (viz. 56

26Fe [10], 85
37Rb [11], and 96

42Mo [11].).
The dynamics of the SG-DQPS is governed by the quantum mechanics because of the de Broglie

wavelength of particles is comparable to the inter-particle distance in SG-DQPS [3,4]. According to the
Heisenberg’s uncertainty principle, in quantum realm, the exact position and momentum of a particle
cannot be determined simultaneously, and mathematically it can be expressed as ∆x∆p ≥ ~/2 (where
∆x is the uncertainty in position of the particle and ∆p is the uncertainty in momentum of the same
particle, and ~ is the reduced Planck constant). In SG-DQPS, the position (momentum) of the plasma
species is well (not well) defined and these confined plasma species with uncertain momentum exerts a
pressure on the surrounding medium. Chandrasekhar more than 80 years ago defined this exert pressure
as degenerate pressure and mathematically it can be expressed as [1,2]

Pj = KjN
γ
j , Kj '

3
5
π~2

mj
, (1)

where j = e for the electron species, j = l (h) for light (heavy) ion species,Kj is the proportional constant,
γ is a relativistic factor and γ = 5/4 (5/3) stands for ultra-relativistic (non-relativistic) limit, and mj is
the mass of the plasma species. The degenerate pressure of the SG-DQPS is dependent (independent)
on the number density and mass (temperature) of the plasma species. The mass of the plasma species
generates a strong gravitational field which provides the inward pull to compress the plasma system, but
this inward pull is counter-balanced by the outward degenerate pressure.

The amplitude of the ion-acoustic waves (IAWs) is appeared to modulation due to wave-particle
interaction, the nonlinear self-interaction of the carrier wave modes, interaction between low and high
frequency modes [12,13]. The modulational instability (MI) and generation of the envelope solitons in any
nonlinear and dispersive medium are governed by the the nonlinear Schrödinger (NLS) equation. Recently,
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a large number of authors have studied the nonlinear wave propagation in SG-DQPS. Asaduzzaman et
al. [14] have investigated the nonlinear propagation of self-gravitational perturbation mode in a super
dense DQP medium. Mamun [15] analyzed shock structures in a self-gravitating, multi-component DQP
and found that the height and thickness of the shock structures are totally dependent on the dissipative
and nonlinear coefficients. Chowdhury et al. [16] have reported that the MI of nucleus-acoustic waves
(NAWs) in a DQP system and found that the MI growth rate of the unstable NAWs is significantly
modified by the number density of nucleus species. Islam et al. [17] have studied envelope solitons in
three component DQP. However to the best of our knowledge, no attempt has been made to study MI
of the IAWs in SG-DQPS. Therefore, in the present work, we will derive a NLS equation by employing
reductive perturbation method (RPM) to study the MI and formation of the envelope solitons in a SG-
DQPS (containing inertialess degenerate electron species, inertial degenerate light as well as heavy ion
species).

The rest of the manuscript is organized as follows: The basic governing equations of our plasma model
is presented in Sec. 2. The derivation of NLS equation by using RPM is presented in Sec. 3. The stability
of the IAWs and envelope solitons are examined in Sec. 4. A brief discussion is provided in Sec. 5.

2 Governing Equations
We consider a SG-DQPS comprising of inertialess degenerate electron species e, inertial degenerate light
ion species l, and heavy ion species h, respectively. The detail information about light and heavy nuclei is
presented in Table 1. The nonlinear dynamics of such a SG-DQPS is governed by the following equations

∂Pe
∂X

= −meNe
∂ψ̃

∂X
, (2)

∂Nl
∂T

+ ∂

∂X
(NlUl) = 0, (3)

∂Ul
∂T

+ Ul
∂Ul
∂X

= − ∂ψ̃
∂X
− 1
mlNl

∂Pl
∂X

, (4)

∂2ψ̃

∂X2 = 4πG [meNe +mlNl +mhNh], (5)

where T (X) is the time (space) variable; Pe (Pl) is the degenerate pressure associated with degenerate
electrons (light ions); me, ml, and mh is the mass of electrons, light, and heavy ions, respectively; Ne,
Nl, and Nh is, respectively, the number densities of the electrons, light, and heavy ions; Ul is the light ion
fluid speed; ψ̃ is the self-gravitational potential; G is the universal gravitational constant. We consider
the SG-DQPS in which the charge densities of positive and negative plasma particle species fluctuate in
such a way that the wave electric field always remains constant. Now, the quasi-neutrality condition at
equilibrium can be expressed as

Ne = ZlNl + ZhNh, (6)

where Zl (Zh) is the charge state of a light (heavy) ion. For the purposes of simplicity, we have considered
the continuity and momentum balance equation for the inertial light ion species l. Now, by introducing
normalized variables, specifically, x = X/Lq, t = T/ωjl, nl = Nl/nl0, ul = Ul/Cq, ψ̃ = C2

qψ, [where
Cq =

√
π~n1/3

e0 /ml, ωjl = 4πGmlnlo, Lq = Cq/ωjl; nl0 (ne0) is the equilibrium number densities of light
ion species (electrons); ψ is the dimensionless self-gravitational potential]. After normalization, Eqs.
(2)−(5) appear in the following form

∂ψ

∂x
= −3

2α
∂n

2/3
e

∂x
, (7)

∂nl
∂t

+ ∂

∂x
(nlul) = 0, (8)

∂ul
∂t

+ ul
∂ul
∂x

= −∂ψ
∂x
− β

∂n
2/3
l

∂x
, (9)

∂2ψ

∂x2 = γe(ne − 1)− γl(nl − 1), (10)
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where α = ml/me, β = (3/2)µ−2/3, µ = ne0/nl0, γe = µ(1/α + γ/Zl), γl = γ − 1; γ = Zlmh/Zhml

(which is larger than 1 for any set of light and heavy ion species). In γe, 1/α� γ/Zl (where 1/α varies
from ∼ 10−4 to ∼ 10−3, and γ/Zl varies from ∼ 0.1 to ∼ 2.0), so 1/α is negligible compared to γ/Zl,
and can be written as γe ' µγ/Zl. For inertialess degenerate electron species, the expression [from Eq.
(7)] for the number density is

ne =
[
1− 2ψ

3α2

] 3
2

= 1− 1
α2ψ + 1

6α4ψ
2 + 1

54α6ψ
3 + · · ·. (11)

Now, by substituting Eq. (11) into Eq. (10), and expanding up to third order in ψ, we get

∂2ψ

∂x2 − γl + γlnl = γ1ψ + γ2ψ
2 + γ3ψ

3 + · · ·, (12)

where γ1 = −γe/α2, γ2 = γe/6α4, and γ3 = γe/54α6. We note that the terms on the right hand side of
Eq. (12) is the contribution of electron.

Table 1. The values of γ when 1
1H [8,9], 4

2He [1,2], and 12
6 C [4,6] are considered as the light ion species, and

56
26Fe [10], 85

37Rb [11], and 96
42Mo [11] are considered as the heavy ion species.

Light ion Heavy ion γ

56
26Fe [10] 2.16

1
1H [8,9] 85

37Rb [11] 2.30

96
42Mo [11] 2.28

56
26Fe [10] 1.08

4
2He [1,2] 85

37Rb [11] 1.15

96
42Mo [11] 1.14

56
26Fe [10] 1.08

12
6 C [4,6] 85

37Rb [11] 1.15

96
42Mo [11] 1.14

3 Derivation of the NLS Equation

In order to demonstrate the MI and the basic features of IAWs in a SG-DQPS, we employ the RPM
[18,19] in which independent variables are stretched as

ξ = ε(x− vgt),
τ = ε2t,

}
(13)

hence, we have

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2

∂

∂τ
, (14)

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
, (15)
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where ε is a small parameter and vg is the real variable interpreted as the group velocity. Furthermore,
the dependent variables nl, ul, and ψ can be expanded in power series of ε as

nl = 1 +
∞∑
m=1

ε(m)
∞∑

l′=−∞
n

(m)
ll′ (ξ, τ) exp[il′(kx− ωt)], (16)

ul =
∞∑
m=1

ε(m)
∞∑

l′=−∞
u

(m)
ll′ (ξ, τ) exp[il′(kx− ωt)], (17)

ψ =
∞∑
m=1

ε(m)
∞∑

l′=−∞
ψ

(m)
l′ (ξ, τ) exp[il′(kx− ωt)], (18)

where ω (k) corresponds to the angular frequency (wave number) of the carrier waves, respectively. Now,
by replacing the Eqs. (13)−(18) into Eqs. (8), (9), and (12), and collecting all terms of similar power of
ε, the first order (m = 1 with l′ = 1) reduced equations can be represented as

n
(1)
l1 = k2

S
ψ

(1)
1 , (19)

u
(1)
l1 = kω

S
ψ

(1)
1 , (20)

where S = ω2 − β1k
2 and β1 = 2β/3. The linear dispersion relation can be obtained from the first-order

equations in the form

ω2 = γlk
2

k2 + γ1
+ β1k

2. (21)

The dispersion properties of IAWs for different values of µ are depicted in Fig. 1 and it may deduce that
(a) the value of ω exponentially decreases with the increase of k; (b) on the other hand, the value of ω
increases (decreases) with ne0 (nl0). Next, the second-order (m = 2 with l′ = 1) reduced equations are
given by

n
(2)
l1 = k2

S
ψ

(2)
1 + 2iωk(vgk − ω)

S2
∂ψ

(1)
1
∂ξ

, (22)

u
(2)
l1 = kω

S
ψ

(2)
1 + i(β1k

2 + ω2)(vgk − ω)
S2

∂ψ
(1)
1
∂ξ

, (23)

with the compatibility condition

vg = ∂ω

∂k
= γlω

2 − (ω2 − β1k
2)2

γlkω
. (24)

The amplitude of the second-order harmonics is found to be proportional to |ψ(1)
1 |2

n
(2)
l2 = C1|ψ(1)

1 |2, n
(2)
l0 = C4|ψ(1)

1 |2,
u

(2)
l2 = C2|ψ(1)

1 |2, u
(2)
l0 = C5|ψ(1)

1 |2,
ψ

(2)
2 = C3|ψ(1)

1 |2, ψ
(2)
0 = C6|ψ(1)

1 |2,

 (25)

where

C1 = 3ω2k4 + 2C3k
2S2

2S2 , C2 = C1ωS
2 − ωk4

kS2 , C3 = 3γlω2k4 − 2γ2S
3

2S3(4k2 + γ1)− 2γlk2S2 ,

C4 = 2ωvgk3 − β2k
4 + k2ω2 + C6S

2

S2(v2
g − β1) , C5 = C4vgS

2 − 2ωk3

S2 , β2 = β

9 ,

C6 =
γl(2ωvgk3 − β2k

4 + k2ω2)− 2γ2S
2(v2

g − β1)
γ1S2(v2

g − β1)− γlS2 .
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Figure 1. The variation of ω with k for different values of µ; along with α = 3.67×103, γ = 2.16, and γ/Zl = 0.5.
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Figure 2. The variation of P/Q with k for different values of µ; along with α = 3.67 × 103, γ = 2.16, and
γ/Zl = 0.5.

Finally, the third harmonic modes (m = 3 with l′ = 1) provide a set of equations and after some
mathematical calculation these equations reduce [with the help of Eqs. (19)−(25)] to the following NLS
equation:

i
∂Φ

∂τ
+ P

∂2Φ

∂ξ2 +Q|Φ|2Φ = 0, (26)

where Φ = ψ
(1)
1 for simplicity. The dispersion coefficient P is given by

P = vgβ
2
1k

5 + 4β1k
2ω3 + 2β1vgω

2k3 − 3vgkω4 − 4ωβ2
1k

4

2γlk2ω2 , (27)

and the nonlinear coefficient Q is given by

Q = 1
2γlωk2S2

[
2γ2(C3 + C6)S4 + 2γ3S

4 − F1
]
, (28)

where F1 = γlk
2ω2S2(C1 + C4) + 2γlωS2k3(C2 + C5) + γlβ3k

8, and β3 = 4β/81.

4 MI and Envelope Solitons

The MI of IAWs can be studied by considering the harmonic modulated amplitude solution of Eq. (26)
of the form Φ = Φ̂eiQ|Φ̂|

2τ + c. c. (c. c. being the complex conjugate), where perturbed amplitudes are
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Figure 3. The variation of Γ with k̃ for different values of µ; along with α = 3.67 × 103, γ = 2.16, γ/Zl = 0.5,
k = 0.00035, and Φ0 = 0.9.
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Figure 4. The variation of Γ with k̃ for different values of γ; along with α = 3.67 × 103, γ/Zl = 0.5, µ = 1.5,
k = 0.00035, and Φ0 = 0.9.

Φ̂ = Φ̂0 + εΦ̂1 and Φ̂1 = Φ̂1,0 exp[i(k̃ξ− ω̃τ)] + c. c (here, the perturbed wave number k̃ and the frequency
ω̃ are different from k and ω). Hence, the nonlinear dispersion relation for the amplitude modulation
obtained by substituting these values in Eq. (26) can be written as [20-22]

ω̃2 = P 2k̃2

(
k̃2 − 2|Φ̂o|2

P/Q

)
. (29)

It is apparent from Eq. (29) that the IAWs will be modulationally stable (unstable) for the range of
values of k̃ in which P/Q is negative (positive), such as, P/Q < 0 (P/Q > 0). When P/Q → ±∞, the
corresponding value of k (= kc) is called threshold or critical wave number for the onset of MI. This kc
separates the unstable region (P/Q > 0) from the stable (P/Q < 0) one. The stability of the profile has
been investigated by depicting the ratio of P/Q with carrier wave number k for different values of µ in
Fig. 2, which clearly indicates that (a) there is an unstable (stable) region for IAWs for the large (small)
value of k; (b) the kc increases (decreases) with the increase of the value of ne0 (nlo). So, the electron
and ion number densities play an opposite role to recognize the stability domain of the IAWs. In the

unstable region P/Q > 0 and under this certain condition k̃ < kc =
√

2Q|Φ̂o|
2
/P , the growth rate (Γ )

of MI is obtained from the Eq. (29) can be written as

Γ = |P | k̃2
√
k2
c

k̃2
− 1, (30)

where Φ̂o is the amplitude of the carrier waves. We have numerically analysed the influence of different
plasma parameters on the MI growth rate by depicting Γ with k̃ [obtained from Eq.(30)] for different
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Figure 5. The variation of the |Φ| with ξ for self-gravitating bright solitons; along with α = 3.67× 103, γ = 2.16,
µ = 1.5, k = 0.0003, ψ0 =0.005, U = 0.001, Ω0 = 0.04, τ = 0.
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Figure 6. The variation of the |Φ| with ξ and τ for self-gravitating bright solitons; along with α = 3.67 × 103,
γ = 2.16, µ = 1.5, k = 0.0003, ψ0 =0.005, U = 0.001, Ω0 = 0.04, τ = 0.

values of µ and γ in Figs. 3 and 4 and it is obvious that (a) initially, the Γ increases with k̃ before
obtained it’s maximum value Γmax. But after Γmax, the Γ decreases to zero for further increase in k̃;
(b) as we increase the value of the electron number density (ne0), the maximum value of the growth
rate decreases but increases with increases of the light ion number density (nl0); (c) on the other hand,
the growth rate Γ decreases with the increase (decrease) of mh (ml) for fixed value of Zl and Zh (via
γ = Zlmh/Zhml); (d) similarly, Γ decreases with the increase (decrease) of Zl (Zh) for fixed value of mh

and ml (via γ). The physics of this result is that the maximum value of the growth rate increases as the
nonlinearity of the plasma system increases with the increase (decrease) of the value of Zh or ml (Zl or
mh).

The self-gravitating bright solitons are generated when the carrier wave is modulationally unstable
in the region P/Q > 0, whose general analytical form reads as [20-22]

Φ(ξ, τ) =
[
ψ0 sech2

(
ξ − Uτ
W

)]1/2
× exp

[
i

2P

{
Uξ +

(
Ω0 −

U2

2

)
τ

}]
, (31)

where U is the propagation speed, ψ0 is the envelope amplitude, Ω0 oscillating frequency for U = 0 and
W is the soliton width which can be defined as W =

√
2|P/Q|/ψ0. The self-gravitating bright envelope

soliton depicted in Figs 5 and 6, clearly indicates that the shape of the self-gravitating bright envelope
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solitons is not affected by any external perturbation through the time evolution. So, the self-gravitating
bright envelope solitons are modulationally stable.

5 Discussion

In this work, we have investigated the amplitude modulation of IAWs in an unmagnetized three compo-
nents SG-DQPS comprising of inertialess degenerate electron species, inertial degenerate light and heavy
ion species. A NLS equation is derived by employing the reductive perturbation method that governs
the stability, circumstance for the appearance of MI growth rate, and formation of the IAWs envelope
solitons in SG-DQPS. The noticeable results found from this theoretical investigation can be outlined as
follows:

1. The ω increases (decreases) with ne0 (nl0), and also decreases exponentially with the increase of k.
2. The IAWs will be stable (unstable) for smaller (larger) values of k.
3. The growth rate decreases with the increase of ne0 but it decreases with increase (decrease) of mh

(ml) for fixed value of Zl and Zh, similarly, growth rate decreases with the increase (decrease) of Zl
(Zh) for fixed value of mh and ml (via γ = Zlmh/Zhml).

4. The shape of the self-gravitating bright envelope solitons is not affected by any external perturbation
through the time evolution. So, the self-gravitating bright envelope solitons are modulationally stable.

In conclusion, we hope that the results from our present theoretical investigation may be helpful in
understanding the nonlinear self-gravitating envelope solitons in astrophysical compact objects (viz.
white dwarf and neutron stars [1-7]).
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