# New Horizons in Mathematical Physics

### Plank’s Constant: Evaluation of Measurement Uncertainty

Download PDF (382.3 KB) PP. 21 - 28 Pub. Date: June 8, 2018

### Author(s)

**Boris Menin**^{*}

Mechanical & Refrigeration Consultation Expert, Beer-Sheba, Israel

### Abstract

### Keywords

### References

[1] M. Henrion and B. Fischhoff, “Assessing uncertainty in physical constants,” Amer. J. Phys., vol. 54, no. 9, pp. 791-798, 1986. http://goo.gl/wYwlBu

[2] R. T. Birge, “The calculation of errors by the method of least squares,” Phys. Rev., vol. 40, pp. 207-227, 1932.

[3] M. G. Morgan, “Uncertainty: An introduction,” CRAG Symposium, Uncertainty – from insight to action, pp. 1-62, 2013.http://goo.gl/LhyzVe

[4] S. G. Rabinovich, Evaluating Measurement Accuracy- A Practical Approach. New York: Springer Science+Business Media, 2013. https://goo.gl/OEJYmY

[5] R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, no. 1,pp. 1-46, 2013. http://goo.gl/s1GomR

[6] B. N. Taylor and T. J. Witt, “New international electrical reference standards based on the Josephson and Quantum Hall effects,” Metrologia, vol. 26, no. 1, pp. 47-62, 1989.

[7] I. M. Mils, P. J. Mohr, T. J. Quinn, B. N. Taylor and E. R. Williams, “Adapting the International System of Units to the twenty-first century,” Phil. Trans. R. Soc. A, vol. 369, pp. 3907-3924, 2011.

[8] A. D. Franklin, “Millikan's Published and Unpublished Data on Oil Drops,” Historical Studies of Physical Sciences, vol.11, no. 2, pp. 185-201, 1981.

[9] H. Arakelian, LMP Fundamental theory. Erevan: Armenian National Academy of Sciences, Sarvard Hrat Ltd., 2010.http://314159.ru/arakelian/arakelian1.pdf

[10] NIST Special Publication 330 (SP330), The International System of Units (SI) 2008. http://physics.nist.gov/Pubs/SP330/sp330.pdf

[11] S. L. Vasilenko, “Mathematics of Golden cross-section through the eyes of a philosopher,” pp. 1-9, 2012, in Russian. http://goo.gl/mMerB3

[12] A. S. Burrows and J. P. Ostriker, “Astronomical reach of fundamental physics,” Proc. Natl. Acad. Sci. USA, vol. 111, no. 7, pp. 2409–2416, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932888/

[13] B. M. Menin, “Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena,” Amer.J. Comput. Appl. Math., vol. 7, no. 1, pp. 11-24, 2017. https://goo.gl/m3ukQi

[14] V. N. Matveev and O. V. Matvejev, “Uncertainty relations as a consequence of the Lorentz transformations,”ResearchGate, pp. 1- 12, 2015. https://goo.gl/3gMRVA

[15] L. Brillouin, Science and Information Theory. New York: Dover, 2004.

[16] A. A. Sonin, The Physical Basis of Dimensional Analysis. 2nd edition, Department of Mechanical Engineering, MIT, 2001. http://web.mit.edu/2.25/www/pdf/DA_unified.pdf

[17] L. Yarin, The Pi-Theorem, Experimental Fluid Mechanics. Berlin: Springer-Verlag, 2012. https://goo.gl/dtNq3D

[18] R. L. Steiner, E. R. Williams, R. Liu and D. B. Newell, “Uncertainty improvements of the NIST electronic kilogram,” IEEE Trans. Instrum. Meas., vol. 56, no. 2, pp. 592–596, 2007.

[19] I. A. Robinson and B. P. Kibble, “An initial measurement of Planck's constant using the NPL Mark II watt balance,” Metrologia, vol. 44, pp. 427–440, 2007.

[20] P. J. Mohr, B. N. Taylor and D. B. Newell, 2012 “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” NIST 20899-8420.

[21] A. Eichenberger, H. Baumann, B. Jeanneret, B. Jeckelmann, P. Richard and W. Beer, “Determination of the Planck constant with the METAS watt balance,” Metrologia, vol. 48, pp. 133–141, 2011.

[22] B. Andreas et al., “Determination of the Avogadro constant by counting the atoms in a 28Si crystal,” Phys. Rev. Lett., 106, 030801, pp. 1-4, 2011.

[23] S. Schlamminger, D. Haddad, F. Seifert, L. S. Chao, D. B. Newell, R. Liu, R. L. Steiner and J. R. Pratt, “Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology,” Metrologia, vol. 51, no.15, pp. 1-22, 2014. http://goo.gl/hxLYTJ

[24] C. A. Sanchez, B. M. Wood, R. G. Green, J. O. Liard and D. Inglis, “A measurement of Planck's constant using the NRC watt balance,” Metrologia, vol. 51, no. 2, pp. 5-14, 2014.

[25] CODATA recommended values of the fundamental physical constants: 2015. https://goo.gl/zqzsrA

[26] NIST-4 watt balance weighs in on Planck's constant 2016. https://goo.gl/jrM9tT

[27] D. Haddad, F. Seifert, L. S. Chao, A. Possolo, D. B. Newell, J. R. Pratt, C. J. Williams and S. Schlamminger, “Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2016,”Metrologia, vol. 54, pp. 633-641, 2017.

[28] B. M. Wood, C. A. Sanchez, R. G. Green and J. O. Liard, “A summary of the Plank constant determinations using the NRC Kibble balance,” Metrologia, vol.54, pp. 399-409, 2017. http://sci-hub.tw/10.1088/1681-7575/aa70bf

[29] R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, 016101.pp. 1-47, 2013. https://sci-hub.tw/10.1088/0034-4885/76/1/016101#

[30] A. Eichenberger, G. Genev and P. Gournay, “Determination of the Planck constant by means of a watt balance,” Eur.Phys. J. Special Topics, vol. 172, pp. 363–383, 2009.

[31] D. Dodson, “Quantum Physics and the Nature of Reality (QPNR) survey: 2011,” 2013. https://goo.gl/z6HCRQ