Isaac Scientific Publishing

Advances in Astrophysics

Raman and Infrared Spectroscopic Tentative Identification of Organic Traces in Sadiya (LL5) Ordinary Chondrite

Download PDF (422.7 KB) PP. 250 - 256 Pub. Date: October 18, 2018

DOI: 10.22606/adap.2018.34004


  • Bhaskar J. Saikia*
    Department of Physics, Anandaram Dhekial Phookan College, Nagaon, India
  • G. Parthasarathy
    National Geophysical Research Institute (CSIR-NGRI), Hyderabad, India
  • Rashmi R. Borah
    Department of Physics, Nowgong College, Nagaon, India


We report here for the first time the possible presence of organic compounds in Sadiya (LL5) ordinary chondrite using micro-Raman and infrared spectroscopic technique. The micro-Raman spectrum exhibits the diamond and graphite peaks correspondingly at 1331 cm-1, 1349 cm-1 and 1588 – 1618 cm-1. The full wave at half maximum value of about 18 cm-1 for Sadiya indicating the nature of disordered phase involved shock metamorphism in the meteorite samples. The diamond and graphite peaks intensity ratio (~0.53) indicates the disordered nature of graphite. The infrared spectrum in the range 2700–3000 cm-1 indicates the presence of CH3 asymmetric stretching, and CH2 symmetric and asymmetric stretching modes due to aliphatic hydrocarbons. This study has strong implications in understanding of the organic compounds in extra-terrestrial materials.


Sadiya meteorite, Raman, infrared, organic compound.


[1] H.Y. McSween Jr., Meteorites and Their Parent Planets, Cambridge, New York, 1999.

[2] G. R. Huss, “Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundance reflect metamorphism”, Nature vol.347, pp.159–162, 1990.

[3] A. Gucsik, O. Ott, E. Marosits, A. Karczemsk, M. Kozanecki, and M. Szurgot. “Micro-Raman study of nanodiamonds from Allende meteorite”. Organic Matter in Space, vol. 251, pp.335–339, 2008.

[4] T. L. Daulton, D. D. Eisenhour, T. J. Bernatowitz, R. S. Lewis, and P. R. Buseck, “Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds”, Geochimica et Cosmochimica Acta, vol. 60, pp. 4853-4872, 1996.

[5] M. Nakamizo, R. Kammereck and P. L. Walker, Jr. “Laser Raman studies on carbons”. Carbon, vol. 12, pp. 259– 267, 1974.

[6] D.G. McCulloch and S. Prawer, “The effect of annealing and implantation temperature on the structure of C ionbeamirradiated glassy carbon”. Journal of Applied Physics, vol.78, pp.3040–3047, 1995.

[7] R. Escribano, J.J. Sloan, N. Siddique, N. Sze and T. Dudev, “Raman spectroscopy of carbon-containing particles”. Vibrational Spectroscopy, vol. 26, pp.179–186, 2001.

[8] H.Tao, J. Moser, F. Alzina, Q. Wang and C.M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator”. Journal of Physical Chemistry C, vol.115, pp.18257–18260, 2011.

[9] I. Gilmour, “Structural and isotopic analysis of organic matter in carbonaceous chondrites in Meteorites, comets, and planets”, Treatise on Geochemistry, vol. 1. Elsevier, 2003, pp. 269–290.

[10] B. J. Saikia, G. Parthasarathy and N.C. Sarmah, “Fourier transform infrared spectroscopic characterization of Dergaon H5 chondrite: Evedence of aliphatic organic compound”, Nature and Science, vol. 7, pp.45–51.

[11] P. Fraundorf, R. I.Patel, P. R. Swan, M. Walker, F. Adar and J.J. Freeman, “Vibrational microspectroscopy of interplanetary dust in the laboratory”, in Microbeam analysis, California: San Francisco Press. pp. 188–190, 1982.

[12] N. A. Starkey, I. A. Franchi and C. M. O’d. Alexander, “A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation”, Meteoritics and Planetary Science, vol. 48, pp.1800–1822, 2013.

[13] N. A. Starkey and I. A. Franchi, “Insight into the silicate and organic reservoirs of the comet forming region”, Geochimica et Cosmochimica Acta, vol.105, pp.73–91, 2013.

[14] L. Bonal, E.Quirico, M. Bourot-Denise and G.Montagnac, “Determination of the petrologic type of CV3 chondrites by Raman spectrscopy of included organic matter”, Geochimica et Cosmochimica Acta, vol. 70, pp.1849–1863, 2006.

[15] L. Bonal, M. Bourot-Denise, E. Quirico, G. Montagnac and E. Lewin. “Organic matter and metamorphic history of CO chondrites”. Geochimica et Cosmochimica Acta, vol.71, pp.1605–1623, 2007.

[16] H. Busemann, C. M. O. D. Alexander and L. R. Nittler, “Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy”, Meteoritics and Planetary Science, vol. 37, pp.1387–1416, 2007.

[17] E. Dobrica, C. Engrand, E. Quirico, G. Montagnac and J. Duprat, “Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites”, Meteoritics and Planetary Science, vol. 46, pp.1363–1375, 2011.

[18] L. J. Allamandola, S. A. Sandford and B.Wopenka, “Interstellar polycyclic aromatic hydrocarbons and the carbon in interplanetary dust particles and meteorites”, Science, vol. 237, pp.56–59, 1987.

[19] B. Wopenka, “Raman observations on individual interplanetary dust particles”, Earth and Planetary Science Letters, vol. 88, pp.221–231, 1988.

[20] E. Quirico, J. N. Rouzaud, L. Bonal, and G. Montagnac, “Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems”, Spectrochimica Acta A, vol. 61, pp.2368–2377, 2005.

[21] A. Rotundi, G. A. Baratta, J. Borg, J. R. Brucato, H. Busemann, L. Colangeli, L. d’Hendecourt, Z. Djouadi, G.Ferrini, I. A. Franchi, M. Fries, F. Grossemy, L.P.Keller, V. Mennella, K. Nakamura, L.R. Nittler, M.E. Palumbo, S.A Sandford., F. J. Steele and B. Wopenka, “Combined micro-Raman, micro-infrared, and filed emission scanning electron microscope analyses of Comet 81P/Wild 2 particles collected by Stardust”. Meteoritics and Planetary Science, vol.43, pp. 367–397, 2008.

[22] B.Wopenka, Y. C. Xu, E. Zinner and S. Amari, “Murchison presolar carbon grains of different density fractions: A Raman spectroscopic perspective”, Geochimica et Cosmochimica Acta, vol.106, pp.463–489, 2013.

[23] L. J. Allamandola, S. A. Sandford, A. G. G. M. Tielens and T. M.Herbst, “Infrared spectroscopy of dense clouds in the C-H stretch region: Methanol and Diamonds”, Astrophysical Journal, vol.399, pp.134-146, 1992.

[24] L. J. Allamandola, S. A. Sandford, A. G. G. M. Tielens and T. M.Herbst, “Diamond in dense molecular clouds: A challenge to the standard interstellar medium paradigm”, Science, vol.260, pp.64, 1993.

[25] B. J. Saikia, G. Parthasarathy, R. R. Borah, R. Borthakur and A.J.D. Sarmah, “Meteorite fall at Sadiya: A Raman spectroscopic classification”, Journal of Astrophysics and Aerospace Technology, vol. 5, pp.149, 2017.

[26] B. J. Saikia, G. Parthasarathy and R.R. Borah, Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy, Meteoritics and Planetary Science, vol. 52, pp. 1146-1154, 2017.

[27] B. J. Saikia, G. Parthasarathy and N.C. Sarmah, “Spectroscopic characterization of olivine[(Fe,Mg)2SiO4] in Mahadevpur H4/5 ordinary chondrite”, Journal of American Science, vol. 5, pp.71–78.

[28] L. Nasdala, D. C. Smith, R. Kaindl and M. A. Zieman, “EMU Notes Mineralogy 6” in Spectroscopic methods in mineralogy, Eotvos University Press, 2004, pp. 281–343.

[29] A. El Goresy, P. Gillet, M. Chen, F. Knstler, G. Graup and V. Stahle, “In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany”, American Mineralogist, vol. 86, pp.611–621, 2001.

[30] H. Kagi, I. Tsuchida, M.Wakatsuki, K. Takahashi, N. Kamimura, K. Iuchi, and H. Wada, “Proper understanding of downshifted Raman spectra of natural graphite: Direct estimation of laser-induced rise in sample temperature”, Geochimica et Cosmochimica Acta, vol. 58, pp.3527–3530, 1994.

[31] M. Miyamoto, “Micro-Raman spectroscopy of diamonds in the Canyon Diablo iron meteorite: Implication for the shock origin”, Antarctic Meteorite Research, vol. 11, pp.171–177, 1988.

[32] R. S.Lewis, T.Ming, J. F.Wacker, E.Anders and E. Steel, “Interstaller diamonds in meteorites”, Nature, vol.326, pp.160-162, 1987.

[33] A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon”, Physical Review B, vol. 64, pp.075414, 2001.

[34] S. R.Sharma, G. Parthasarathy, T. R. Ravindran, A. K. Arora, and B. Kumar, “Laser Raman spectroscopic studies on graphites from Dharwar craton: A possible metamorphic grade indicator for the host rocks”, Journal of Geological Society of India, vol. 55, pp.413–420, 2000.

[35] J. Filik, N.Harvey, N. L.Allan, P. W.May, J. E. P.Dahl, S. Liu and R. M. K. Carlson, “Raman spectroscopy of nanocrystalline dimond: An ab intino approach”, Physical Review B, vol.74, pp. 035423–035433, 2006.

[36] K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, John Wiley & Sons, 1978.

[37] B. J. Saikia, G. Parthasarathy, R. R. Borah, M. Satyanarayanan, R. Borthakur and P. Chetia, “Spectroscopy and mineralogy of a fresh meteorite fall Kamargaon (L6) chondrite”, Proceedings of the Indian National Science Academy, vol. 83, pp.941-948, 2017.

[38] J. W. Salisbury, L. S.Walter, N.Vergo and D. M. Aria, “Infrared (2.1-25 μm) spectra of minerals”, The Johns Hopkins University, 1992.

[39] G. Socrates, “Infrared and Raman characteristic group frequencies”, Wiley and Sons, 2001.

[40] G. Matrajt, J.Borg, P. I.Raynal, Z. Djouadi, L. d.Hendecourt, G. Flynn, and D. Deboffe, “FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium”, Astronomy & Astrophysics, vol.416, pp.983-990, 2004.

[41] Z. Martins, “Organic Chemistry of Carbonaceous Meteorites,” Elements, vol. 7, pp. 35-40, 2011.

[42] C. Potiszil, W. Montgomery and M. A. Sephton, “Effects of Pressure on Model Compounds of Meteorite Organic Matter”, ACS Earth and Space Chemistry, vol.1, pp.475-482, 2017.

[43] J. G. Lawless, C. E. Folsome and K. A. Kvenvolden, “Organic matter in meteorites”, Scientific American, vol.226, pp.38- 46, 1972.